Advertisement

A review of forensic approaches to digital image Steganalysis

  • Shaveta ChutaniEmail author
  • Anjali Goyal
Article
  • 33 Downloads

Abstract

Traditional or Binary Steganalysis brands a digital object such as an image as stego or innocent only but modern day information security requires deeper insight about the embedded message. Forensic Steganalysis is the systemic application of different research techniques to gather further in-depth knowledge about the hidden secret information. Once an image is categorised as being stego, additional investigations are carried out to find the steganographic algorithm used to insert the covert message, estimate the length of such message and finally the stego key used to embed the message in various pixels of the stego image. A lot more literature is available on the review of the traditional steganalysis techniques as compared to forensic steganalysis. The present paper gives details about important forensic techniques as available in the steganalysis literature. The techniques presented and discussed relate to digital image domain for determination of the embedding algorithm, estimation of the secret message payload and stego key determination. The paper describes and compares different features of these forensic techniques. Discussions about significant performance metrics and evaluation parameters used in all phases further elaborate the comparative perspective. We identify potential challenges and explore areas of future work to boost the capabilities of present forensic steganalyzers.

Keywords

Forensic Steganalysis Multi-class classification Payload estimation Quantitative Steganalysis Stego-key attack 

Notes

References

  1. 1.
    Avcibaş I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. IEEE Trans Image Process 12:221–229.  https://doi.org/10.1109/TIP.2002.807363 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avcibaş I, Kharrazi M, Memon N, Sankur B (2005) Image steganalysis with binary similarity measures. EURASIP J Adv Signal Process 679350.  https://doi.org/10.1155/ASP.2005.2749
  3. 3.
    Bayram S, Dirik AE, Sencar HT, Memon N (2010) An Ensemble of Classifiers Approach to Steganalysis. In: 2010 20th International Conference on Pattern Recognition. IEEE, pp 4376–4379Google Scholar
  4. 4.
    Böhme R (2005) Assessment of Steganalytic Methods Using Multiple Regression Models. In: Barni M, Herrera-Joancomartí J, Katzenbeisser S, Pérez-González F (eds) Information Hiding. IH 2005. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 278–295Google Scholar
  5. 5.
    Böhme R (2008) Weighted stego-image steganalysis for JPEG covers. In: Solanki K, Sullivan K, Madhow U (eds) Information hiding. IH 2008. Lecture notes in computer science. Springer, Berlin, pp 178–194Google Scholar
  6. 6.
    Böhme R, Ker AD (2006) A two-factor error model for quantitative steganalysis. In: Security, Steganography, and Watermarking of Multimedia Contents VIII. San Jose, California, United States, p 607206Google Scholar
  7. 7.
    Chandramouli R, Kharrazi M, Memon N (2004) Image steganography and Steganalysis: concepts and practice. In: Kalker T, Cox I, Ro YM (eds) Digital watermarking. IWDW 2003. Lecture notes in computer science. Springer, Berlin, pp 35–49Google Scholar
  8. 8.
    Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90:727–752.  https://doi.org/10.1016/j.sigpro.2009.08.010 CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen X, Wang Y, Tan T, Guo L (2006) Blind Image Steganalysis Based on Statistical Analysis of Empirical Matrix. In: 18th International Conference on Pattern Recognition. IEEE, Hong Kong, China, pp 1107–1110Google Scholar
  10. 10.
    Chen J, Liu J, Zhang W et al (2013) Cryptographic secrecy analysis of matrix embedding. Int J Comput Intell Syst 6:639–647.  https://doi.org/10.1080/18756891.2013.802116 CrossRefGoogle Scholar
  11. 11.
    Chen M, Boroumand M, Fridrich J (2015) Deep Learning Regressors for Quantitative Steganalysis. In: Alattar AM, Memon ND, Heitzenrater CD (eds) SPIE 9409, Media Watermarking, Security, and Forensics 2015, 94090JGoogle Scholar
  12. 12.
    Chen M, Sedighi V, Boroumand M, Fridrich J (2017) JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. ACM, Philadelphia, Pennsylvania, USA, pp 75–84Google Scholar
  13. 13.
    Cho S, Wang J, Kuo C-CJ, Cha B-H (2010) Block-based image steganalysis for a multi-classifier. In: 2010 IEEE International Conference on Multimedia and Expo. IEEE, Suntec City, Singapore, pp 1457–1462Google Scholar
  14. 14.
    Cho S, Cha B-H, Gawecki M, Kuo C-CJ (2013) Block-based image steganalysis: algorithm and performance evaluation. J Vis Commun Image Represent 24:846–856.  https://doi.org/10.1016/j.jvcir.2013.05.007 CrossRefGoogle Scholar
  15. 15.
    Christaline AJ, Ramesh R, Vaishali D (2016) Bio-inspired computational algorithms for improved image steganalysis. Indian J Sci Technol 9.  https://doi.org/10.17485/ijst/2016/v9i10/88995
  16. 16.
    Christaline AJ, Ramesh R, Gomathy C, Vaishali D (2018) Nature inspired metaheuristics for improved JPEG steganalysis. Multimed Tools Appl 77:13701–13720.  https://doi.org/10.1007/s11042-017-4983-4 CrossRefGoogle Scholar
  17. 17.
    Chutani S, Goyal A (2018) Improved universal quantitative steganalysis in spatial domain using ELM ensemble. Multimed Tools Appl 77:7447–7468.  https://doi.org/10.1007/s11042-017-4656-3 CrossRefGoogle Scholar
  18. 18.
    Cogranne R, Fridrich J (2015) Modeling and extending the ensemble classifier for Steganalysis of digital images using hypothesis testing theory. IEEE Trans Inf Forensics Secur 10:1–17.  https://doi.org/10.1109/TIFS.2015.2470220 CrossRefGoogle Scholar
  19. 19.
    Cole E, Krutz RD (2003) Hiding in Plain Sight : Steganography and the Art of Covert Communication. Wiley Publishing, IncGoogle Scholar
  20. 20.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297.  https://doi.org/10.1023/A:1022627411411 CrossRefzbMATHGoogle Scholar
  21. 21.
    Denemark T, Sedighi V, Holub V, et al (2014) Selection-channel-aware rich model for Steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security, WIFS 2014. IEEE, Atlanta, GA, USA, pp 48–53Google Scholar
  22. 22.
    Desai MB, Patel SV, Prajapati B (2016) ANOVA and fisher criterion based feature selection for lower dimensional universal image Steganalysis. Int J Image Process 10:145–160Google Scholar
  23. 23.
    Dong J, Tan T (2008) Blind image steganalysis based on run-length histogram analysis. In: 15th IEEE International Conference on Image Processing. IEEE, San Diego, CA, USAGoogle Scholar
  24. 24.
    Dong J, Wang W, Tan T (2009) Multi-class Blind Steganalysis Based on Image Run-Length Analysis. In: Ho ATS, Shi YQ, Kim HJ, Barni M (eds) Digital Watermarking. IWDW 2009. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Guildford, UK, pp 199–210Google Scholar
  25. 25.
    Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Process 51:1995–2007.  https://doi.org/10.1109/TSP.2003.812753 CrossRefzbMATHGoogle Scholar
  26. 26.
    Farid H (2002) Detecting hidden messages using higher-order statistical models. In: Proceedings. International Conference on Image Processing. IEEE, Rochester, NY, USA, pp 905–908Google Scholar
  27. 27.
    Fridrich J (2004) Feature-Based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes. In: Fridrich J (ed) Information Hiding. IH 2004. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Toronto, Canada, pp 67–81Google Scholar
  28. 28.
    Fridrich J (2009) Steganography in digital media: principles, algorithms, and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  29. 29.
    Fridrich J, Goljan M (2004) On estimation of secret message length in LSB steganography in spatial domain. In: Delp EJ, Wong PW (eds) Security, Steganography, and Watermarking of Multimedia Contents VI. SPIE, San Jose, California, United States, pp 23–34Google Scholar
  30. 30.
    Fridrich J, Kodovsky J (2012) Rich models for Steganalysis of digital images. IEEE Trans Inf Forensics Secur 7:868–882.  https://doi.org/10.1109/TIFS.2012.2190402 CrossRefGoogle Scholar
  31. 31.
    Fridrich J, Goljan M, Du R (2001) Detecting LSB steganography in color and gray-scale images. IEEE Multimed 8:22–28.  https://doi.org/10.1109/93.959097 CrossRefGoogle Scholar
  32. 32.
    Fridrich J, Goljan M, Soukal D (2004) Searching for the stego-key. In: Security, Steganography, and Watermarking of Multimedia Contents VI; San Jose, California, US, pp 1607–777Google Scholar
  33. 33.
    Fridrich J, Goljan M, Soukal D, Holotyak T (2005) Forensic steganalysis: determining the stego key in spatial domain steganography. In: Proc. SPIE 5681, Security, Steganography, and Watermarking of Multimedia Contents VII. p 631Google Scholar
  34. 34.
    Ghasemzadeh H, Khalil Arjmandi M (2017) Universal audio steganalysis based on calibration and reversed frequency resolution of human auditory system. IET Signal Process 11:916–922.  https://doi.org/10.1049/iet-spr.2016.0690 CrossRefGoogle Scholar
  35. 35.
    Goth G (2005) Steganalysis gets past the hype. IEEE Distrib Syst Online 6:2.  https://doi.org/10.1109/MDSO.2005.22 CrossRefGoogle Scholar
  36. 36.
    Guan Q, Dong J, Tan T (2011) Blind quantitative Steganalysis based on feature fusion and gradient boosting. In: Kim H, Shi YQ, Barni M (eds) Digital watermarking. IWDW 2010. Lecture notes in computer science. Springer, Berlin, pp 266–279Google Scholar
  37. 37.
    Harmsen JJ, Pearlman WA (2003) Steganalysis of additive-noise modelable information hiding. In: Delp EJ, Wong PW (eds) Security and Watermarking of Multimedia Contents V. SPIE, Santa Clara, CA, United States, pp 131–142Google Scholar
  38. 38.
    Hetzl S, Mutzel P (2005) A graph-theoretic approach to steganography. In: Dittmann J, Katzenbeisser S, Uhl A (eds) Communications and Multimedia Security. CMS 2005. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Salzburg, Austria, pp 119–128Google Scholar
  39. 39.
    Holub V Fridrich J (2013) digital image steganography using universal distortion. In: 1st ACM information hiding and multimedia security workshop. ACM. Montpellier, France, pp 59–68Google Scholar
  40. 40.
    Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Info Secur 2014:1–13.  https://doi.org/10.1186/1687-417X-2014-1 CrossRefGoogle Scholar
  41. 41.
    Hu D, Ma Z, Fan Y et al (2018) Study on the interaction between the cover source mismatch and texture complexity in steganalysis. Multimed Tools Appl:1–24.  https://doi.org/10.1007/s11042-018-6497-0
  42. 42.
    Jena SK, Krishna GVV (2007) Blind Steganalysis: estimation of hidden message length. Int J Comput Commun Control 2:149–158.  https://doi.org/10.15837/ijccc.2012.2.2348 CrossRefGoogle Scholar
  43. 43.
    Karampidis K, Kavallieratou E, Papadourakis G (2018) A review of image steganalysis techniques for digital forensics. J Inf Secur Appl 40:217–235.  https://doi.org/10.1016/J.JISA.2018.04.005 CrossRefGoogle Scholar
  44. 44.
    Ker AD (2005) A General Framework for Structural Steganalysis of LSB Replacement. In: Barni M, Herrera-Joancomartí J, Katzenbeisser S, Pérez-González F (eds) Information Hiding. IH 2005. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Barcelona, Spain, pp 296–311Google Scholar
  45. 45.
    Ker AD (2006) Fourth-order structural steganalysis and analysis of cover assumptions. In: Delp EJ, Wong PW (eds) Security, Steganography, and Watermarking of Multimedia Contents VIII. SPIE, San Jose, California, United States, p 607203Google Scholar
  46. 46.
    Ker AD (2007) A fusion of maximum likelihood and structural Steganalysis. In: Furon T, Cayre F, Doërr G, Bas P (eds) Information hiding. IH 2007. Lecture notes in computer science. Springer, Berlin, pp 204–219Google Scholar
  47. 47.
    Ker AD (2007) Derivation of error distribution in least squares steganalysis. IEEE Trans Inf Forensics Secur 2:140–148.  https://doi.org/10.1109/TIFS.2007.897265 CrossRefGoogle Scholar
  48. 48.
    Ker AD (2007) Optimally weighted least-squares steganalysis. In: Delp EJ, Wong PW (eds) Security, Steganography, and Watermarking of Multimedia Contents IX. SPIE, p 650506Google Scholar
  49. 49.
    Ker AD, Böhme R (2008) Revisiting Weighted Stego-Image Steganalysis. In: Delp EJ, Wong PW, Dittmann J, Memon ND (eds) Security, Forensics, Steganography, and Watermarking of Multimedia Contents X. SPIE, San Jose, California, United States, p 681905Google Scholar
  50. 50.
    Kim Y, Duric Z, Richards D (2007) Modified Matrix Encoding Technique for Minimal Distortion Steganography. In: Camenisch JL, Collberg CS, Johnson NF, Sallee P (eds) Information Hiding. IH 2006. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Alexandria, VA, USA, pp 314–327Google Scholar
  51. 51.
    Kirchner M, Bohme R (2014) “Steganalysis in technicolor” boosting WS detection of stego images from CFA-interpolated covers. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Florence, Italy, pp 3982–3986Google Scholar
  52. 52.
    Kodovský J, Fridrich J (2012) Steganalysis of JPEG images using rich models. In: Media Watermarking, Security, and Forensics 2012. International Society for Optics and Photonics, p 83030A–83030A–13Google Scholar
  53. 53.
    Kodovský J, Fridrich J (2013) Quantitative steganalysis using rich models. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013, 86650O. Burlingame, California, United StatesGoogle Scholar
  54. 54.
    Kodovský J, Pevný T, Fridrich J (2010) Modern steganalysis can detect YASS. In: Memon ND, Dittmann J, Alattar AM, Delp EJ (eds) Media Forensics and Security II. SPIE, San Jose, California, United States, p 754102Google Scholar
  55. 55.
    Kodovsky J, Holub V, Fridrich J (2012) Ensemble classifiers for Steganalysis of digital media. IEEE Trans Inf Forensics Secur 7:432–444.  https://doi.org/10.1109/TIFS.2011.2175919 CrossRefGoogle Scholar
  56. 56.
    Lafferty P, Ahmed F (2004) Texture-based steganalysis: results for color images. In: Schmalz MS (ed) Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications. SPIE, Denver, Colorado, United States, pp 145–151Google Scholar
  57. 57.
    Latham A (1999) JPHide&Seek. http://linux01.gwdg.de/~alatham/stego.html. Accessed 2 Oct 2018
  58. 58.
    Li X, Zhang T, Zhang Y et al (2014) Quantitative steganalysis of spatial ±1 steganography in JPEG decompressed images. Multimed Tools Appl 73:1487–1506.  https://doi.org/10.1007/s11042-013-1654-y CrossRefGoogle Scholar
  59. 59.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Image Commun 58:146–156.  https://doi.org/10.1016/j.image.2017.07.006 CrossRefGoogle Scholar
  60. 60.
    Liao X, Guo S, Yin J et al (2018) New cubic reference table based image steganography. Multimed Tools Appl 77:10033–10050.  https://doi.org/10.1007/s11042-017-4946-9 CrossRefGoogle Scholar
  61. 61.
    Lie W-N, Lin G-S (2005) A feature-based classification technique for blind image steganalysis. IEEE Trans Multimed 7:1007–1020.  https://doi.org/10.1109/TMM.2005.858377 CrossRefGoogle Scholar
  62. 62.
    Liu J, Tang G (2012) Stego key estimation in LSB steganography. J Multimed 7:309–313.  https://doi.org/10.4304/jmm.7.4.309-313 CrossRefGoogle Scholar
  63. 63.
    Liu J, Tian Y, Han T et al (2016) Stego key searching for LSB steganography on JPEG decompressed image. Sci China Inf Sci 59:32105.  https://doi.org/10.1007/s11432-015-5367-x CrossRefGoogle Scholar
  64. 64.
    Lu P, Luo X, Tang Q, Shen L (2004) An improved sample pairs method for detection of LSB embedding. In: Fridrich J (ed) Information hiding. IH 2004. Lecture notes in computer science. Springer, Berlin, pp 116–127Google Scholar
  65. 65.
    Lubenko I, Ker AD (2011) Steganalysis using logistic regression. In: Memon ND, Dittmann J, Alattar AM, Delp III EJ (eds) SPIE 7880, Media Watermarking, Security, and Forensics III, 78800K. International Society for Optics and PhotonicsGoogle Scholar
  66. 66.
    Luo X, Song X, Li X et al (2016) Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl 75:13557–13583.  https://doi.org/10.1007/s11042-015-2759-2 CrossRefGoogle Scholar
  67. 67.
    Lyu S, Farid H (2006) Steganalysis using higher-order image statistics. IEEE Trans Inf Forensics Secur 1:111–119.  https://doi.org/10.1109/TIFS.2005.863485 CrossRefGoogle Scholar
  68. 68.
    Ma Y, Luo X, Li X et al (2018) Selection of rich model Steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circuits Syst Video Technol.  https://doi.org/10.1109/TCSVT.2018.2799243
  69. 69.
    Miche Y, Sorjamaa A, Bas P et al (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21:158–162.  https://doi.org/10.1109/TNN.2009.2036259 CrossRefGoogle Scholar
  70. 70.
    Miche Y, Bas P, Lendasse A (2010) Using Multiple Re-embeddings for Quantitative Steganalysis. Aalto University School of Science and TechnologyGoogle Scholar
  71. 71.
    Nissar A, Mir AH (2010) Classification of steganalysis techniques : a study. Digit Signal Process 20:1758–1770.  https://doi.org/10.1016/j.dsp.2010.02.003 CrossRefGoogle Scholar
  72. 72.
    Pevný T, Fridrich J (2005) Towards Multi-class Blind Steganalyzer for JPEG Images. In: Barni M, Cox I, Kalker T, Kim HJ (eds) Digital Watermarking. IWDW 2005. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Siena, Italy, pp 39–53Google Scholar
  73. 73.
    Pevný T, Fridrich J (2006) Multi-class blind steganalysis for JPEG images. In: Security, Steganography, and Watermarking of Multimedia Contents VIII. San Jose, California, United States, p 60720OGoogle Scholar
  74. 74.
    Pevný T, Fridrich J (2007) Merging Markov and DCT Features for Multi-Class JPEG Steganalysis. In: Delp EJ, Wong PW (eds) Security, Steganography, and Watermarking of Multimedia Contents IX. SPIE, p 650503Google Scholar
  75. 75.
    Pevný T, Fridrich J (2008) Multiclass detector of current steganographic methods for JPEG format. IEEE Trans Inf Forensics Secur 3:635–650.  https://doi.org/10.1109/TIFS.2008.2002936 CrossRefGoogle Scholar
  76. 76.
    Pevný T, Fridrich J (2008) Novelty detection in blind steganalysis. In: Proceedings of the 10th ACM workshop on Multimedia and security. ACM, Oxford, United Kingdom, pp 167–176Google Scholar
  77. 77.
    Pevný T, Ker AD (2014) Steganographic key leakage through payload metadata. In: 2nd ACM workshop on Information hiding and multimedia security. ACM, Salzburg, Austria, pp 109–114Google Scholar
  78. 78.
    Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Böhme R, Fong PWL, Safavi-Naini R (eds) Information hiding. IH 2010. Lecture notes in computer science. Springer, Berlin, pp 161–177Google Scholar
  79. 79.
    Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensics Secur 5:215–224.  https://doi.org/10.1109/TIFS.2010.2045842 CrossRefGoogle Scholar
  80. 80.
    Pevny T, Fridrich J, Ker AD (2012) From blind to quantitative Steganalysis. IEEE Trans Inf Forensics Secur 7:445–454.  https://doi.org/10.1109/TIFS.2011.2175918 CrossRefGoogle Scholar
  81. 81.
    Provos N (1998) OutGuess - Universal Steganography. http://cimarron.river.com/mirrors/www.outguess.org/. Accessed 2 Oct 2018
  82. 82.
    Provos N, Honeyman P (2002) Detecting Steganographic Content on the Internet. In: CITI Technical Report. pp 01–11Google Scholar
  83. 83.
    Qian Y, Dong J, Wang W, Tan T (2016) Learning and transferring representations for image steganalysis using convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE, Phoenix, AZ, USA, pp 2752–2756Google Scholar
  84. 84.
    Regalia PA (2008) Cryptographic secrecy of Steganographic matrix embedding. IEEE Trans Inf Forensics Secur 3:785–790.  https://doi.org/10.1109/TIFS.2008.2002940 CrossRefGoogle Scholar
  85. 85.
    Rodriguez BM, Peterson GL (2008) Multi-class classification fusion using boosting for identifying steganography methods. In: Dasarathy B V. (ed) Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications. SPIE, Orlando, Florida, United States, p 697407Google Scholar
  86. 86.
    Rodriguez B, Peterson G, Bauer K (2008) Fusion of Steganalysis systems using Bayesian model averaging. In: Ray I, Shenoi S (eds) Advances in digital forensics IV. Springer, Boston, pp 345–355CrossRefGoogle Scholar
  87. 87.
    Sachnev V, Ramasamy S, Sundaram S et al (2014) A cognitive Ensemble of Extreme Learning Machines for Steganalysis based on risk-sensitive hinge loss function. Cognit Comput 7:103–110.  https://doi.org/10.1007/s12559-014-9268-x CrossRefGoogle Scholar
  88. 88.
    Sajedi H (2016) Steganalysis based on steganography pattern discovery. J Inf Secur Appl 30:3–14.  https://doi.org/10.1016/j.jisa.2016.04.001 CrossRefGoogle Scholar
  89. 89.
    Sallee P (2004) Model-based steganography. In: Kalker T, Cox I, Ro YM (eds) Digital watermarking. IWDW 2003. Lecture notes in computer science. Springer, Berlin, pp 154–167Google Scholar
  90. 90.
    Sallee P (2005) Model-based methods for steganography and Steganalyisis. Int J Image Graph 05:167–189.  https://doi.org/10.1142/S0219467805001719 CrossRefGoogle Scholar
  91. 91.
    Savoldi A, Gubian P (2006) A Methodology to Improve the Detection Accuracy in Digital Steganalysis. In: International Conference on Intelligent Information Hiding and Multimedia. IEEE, Pasadena, CA, USA, pp 373–376Google Scholar
  92. 92.
    Savoldi A, Gubian P (2007) Blind Multi-Class Steganalysis System Using Wavelet Statistics. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, Kaohsiung, Taiwan, pp 93–96Google Scholar
  93. 93.
    Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical detectability. IEEE Trans Inf Forensics Secur 11:221–234.  https://doi.org/10.1109/TIFS.2015.2486744 CrossRefGoogle Scholar
  94. 94.
    Shi YQ, Xuan G, Zou D, et al (2005) Image Steganalysis Based on Moments of Characteristic Functions Using Wavelet Decomposition, Prediction-Error Image, and Neural Network. In: IEEE International Conference on Multimedia and Expo. IEEE, Amsterdam, Netherlands, pp 269–272Google Scholar
  95. 95.
    Shi YQ, Chen C, Chen W (2007) A Markov process based approach to effective attacking JPEG steganography. In: Camenisch JL, Collberg CS, Johnson NF, Sallee P (eds) Information Hiding. IH 2006. Lecture Notes in Computer Science,. Springer Berlin Heidelberg, Alexandria, VA, USA, pp 249–264Google Scholar
  96. 96.
    Shojae Chaeikar S, Zamani M, Abdul Manaf AB, Zeki AM (2018) PSW statistical LSB image steganalysis. Multimed Tools Appl 77:805–835.  https://doi.org/10.1007/s11042-016-4273-6 CrossRefGoogle Scholar
  97. 97.
    Solanki K, Sarkar A, Manjunath BS (2007) YASS: Yet another steganographic scheme that resists blind steganalysis. In: Furon T, Cayre F, Doërr G, Bas P (eds) Information Hiding. IH 2007. Lecture Notes in Computer Science,. Springer, Berlin, Heidelberg, Saint Malo, France, pp 16–31Google Scholar
  98. 98.
    Subhedar MS, Mankar VH (2014) Current status and key issues in image steganography: a survey. Comput Sci Rev 13:95–113.  https://doi.org/10.1016/j.cosrev.2014.09.001 CrossRefzbMATHGoogle Scholar
  99. 99.
    Sun Z, Hui M, Guan C (2008) Steganalysis based on co-occurrence matrix of differential image. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, Harbin, China, pp 1097–1100Google Scholar
  100. 100.
    Trivedi S, Chandramouli R (2005) Secret key estimation in sequential steganography. IEEE Trans Signal Process 53:746–757.  https://doi.org/10.1109/TSP.2004.839925 MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Upham D (1995) Steganographic algorithm JSteg. ftp://ftp.funet.fi/pub/crypt/steganography/
  102. 102.
    Veena ST, Arivazhagan S (2018) Quantitative steganalysis of spatial LSB based stego images using reduced instances and features. Pattern Recogn Lett 105:39–49.  https://doi.org/10.1016/j.patrec.2017.08.016 CrossRefGoogle Scholar
  103. 103.
    Westfeld A (2001) F5 — a Steganographic algorithm high capacity despite better Steganalysis. In: Moskowitz IS (ed) Information hiding. IH 2001. Lecture notes in computer science. Springer, BerlinGoogle Scholar
  104. 104.
    Westfeld A, Pfitzmann A (2000) Attacks on steganographic systems. In: Pfitzmann A (ed) Information hiding. IH 1999. Lecture notes in computer science. Springer, Berlin, pp 61–75Google Scholar
  105. 105.
    Xiao YY, Aiming W (2009) An investigation of genetic algorithm on steganalysis techniques. In: Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, Kyoto, Japan, pp 1118–1121Google Scholar
  106. 106.
    Xu G, Wu H-Z, Shi YQ (2016) Ensemble of CNNs for Steganalysis. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. ACM, Vigo, Galicia, Spain, pp 103–107Google Scholar
  107. 107.
    Xu C, Liu J, Gan J, Luo X (2018) Stego key recovery based on the optimal hypothesis test. Multimed Tools Appl 77:17973–17992.  https://doi.org/10.1007/s11042-017-4878-4 CrossRefGoogle Scholar
  108. 108.
    Xu X, Sun Y, Wu J, Sun Y (2018) Steganography algorithms recognition based on match image and deep features verification. Multimed Tools Appl 77:27955–27979.  https://doi.org/10.1007/s11042-018-6010-9 CrossRefGoogle Scholar
  109. 109.
    Xuan GR, Shi YQ, Gao J, et al (2005) Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In: Barni M, Herrera-Joancomartí J, Katzenbeisser S, Pérez-González F (eds) Information Hiding. IH 2005. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Barcelona, Spain, pp 262–277Google Scholar
  110. 110.
    Yang C, Liu F, Luo X (2011) Error correction of sample pair analysis based on support vector regression. In: Third international conference on multimedia information networking and security. IEEE, Shanghai, pp 633–636Google Scholar
  111. 111.
    Yang C, Liu F, Luo X, Zeng Y (2013) Fusion of two typical quantitative steganalysis based on SVR. J Softw 8:731–736.  https://doi.org/10.4304/jsw.8.3.731-736 CrossRefGoogle Scholar
  112. 112.
    Yang C, Luo X, Lu J, Liu F (2018) Extracting hidden messages of MLSB steganography based on optimal stego subset. Sci China Inf Sci 61:119103.  https://doi.org/10.1007/s11432-017-9328-2 CrossRefGoogle Scholar
  113. 113.
    Zhang W, Li S (2002) On the unicity distance of Stego key. Sci CHINA Inf Sci 1:1–8Google Scholar
  114. 114.
    Zhang T, Ping X (2003) A new approach to reliable detection of LSB steganography in natural images. Signal Process 83:2085–2093.  https://doi.org/10.1016/S0165-1684(03)00169-5 CrossRefzbMATHGoogle Scholar
  115. 115.
    Zhu J, Guan Q, Zhao X (2015) Multi-class JPEG Image Steganalysis by Ensemble Linear SVM Classifier. In: Shi Y, Kim H, Pérez-González F, Yang C (eds) Digital-Forensics and Watermarking. IWDW 2014. Lecture Notes in Computer Science. Springer, Cham, pp 470–484Google Scholar
  116. 116.
    Zielińska E, Mazurczyk W, Szczypiorski K (2014) Trends in steganography. Commun ACM 57:86–95CrossRefGoogle Scholar
  117. 117.
    Ziou D, Jafari R (2014) Efficient steganalysis of images: learning is good for anticipation. Pattern Anal Appl 17:279–289.  https://doi.org/10.1007/s10044-012-0303-9 MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    Zong H, Liu F, Luo X (2012) Blind image steganalysis based on wavelet coefficient correlation. Digit Investig 9:58–68.  https://doi.org/10.1016/j.diin.2012.02.003 CrossRefGoogle Scholar
  119. 119.
    Zou D, Shi YQ, Su W, Xuan G (2006) Steganalysis based on Markov Model of Thresholded Prediction-Error Image. In: IEEE International Conference on Multimedia and Expo. IEEE, Toronto, Ont., Canada, pp 1365–1368Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IK Gujral Punjab Technical UniversityKapurthalaIndia
  2. 2.Department of Computer ApplicationsGNIMTLudhianaIndia

Personalised recommendations