Secure grayscale image communication using significant visual cryptography scheme in real time applications

  • G. Selva MaryEmail author
  • S. Manoj Kumar


An increase in information sharing and growth of Cloud Computing, Internet of Things (IoT), Machine Learning and mobile applications have brought human life in the digital world. Many times, financial transactions, medical communications that involve the transfer of images impose threats to our Privacy, Personal Identity and Personal Health Information (PHI). Such image data are being stolen while in transfer and made the processing of digital images vulnerable in World Wide Web (WWW). Protecting the image data from intruders becomes an essential demand. Various techniques such as Encryption, Steganography and Watermarking are in place to protect image data. Such techniques imply complex computations for encryption and decryption and the quality of image decrypted is reduced. Visual Cryptography (VC) is a new encryption method uses combinational techniques to encode the image into n shares and decodes by stacking the shares without complex traditional cryptographic algorithms. The Signific Visual Cryptography (SVC) aims to transfer the real time images securely without compromising the quality. SVC is implemented for (k, n) scheme and (n, n) scheme of VC and supports several real time images such as natural images, medical images, and Quick Response (QR) images. To develop SVC scheme, a new Error Abatement Technique (EAT) is proceeded with two filtering strategies namely, Value Discretization Filtering (VDF) and Reduced Error Filtering (REF) to provide significant meaning to pixel values. The performance analysis proves that (k, n) SVC improves the quality of the reconstructed secret image with increased Peak Signal-to-Noise Ratio (PSNR) up to 21% and Pixel error is calculated as Mean Square Error (MSE) and it is reduced up to 77%. (n, n) SVC maintains integrity of the secret image with zero MSE without complex computations.


Real time image communication Secret sharing Security Signific Visual cryptography 



  1. 1.
    Banik BG, Bandyopadhyay SK (2015) Secret sharing using 3 level DWT method of image steganography based on Lorenz chaotic encryption and visual cryptography. 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, p 1147-1152.
  2. 2.
    Beimel (2011) Secret-sharing schemes: a survey. Proc. 3rd Int. Workshop Coding Cryptol. (IWCC), 6639:11-46Google Scholar
  3. 3.
    Blesswin AJ, Visalakshi P (2013) An improved grayscale visual secret sharing scheme for visual information security. 2013 Fifth International Conference on Advanced Computing (ICoAC), Chennai, p 560-564.
  4. 4.
    Blundo C, De Santis A (1999) Visual cryptography schemes with perfect reconstruction of black pixels. J. Computers Graphics, Special issue: “Data Security in Image Communication and Networking.” 22(4):449–455Google Scholar
  5. 5.
    Blundo C, D’Arco P, De Santis A, Stinson DR (2003) Contrast optimal threshold visual cryptography schemes. SIAM J Discret Math 16(2):224–261MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bose M, Mukerjee R (2010) Optimal (kn) visual cryptographic schemes for general k. Des Codes Crypt 55(1):19–35CrossRefGoogle Scholar
  7. 7.
    Cimato S, de Prisco R, de Santis A (2005) Optimal colored threshold visual cryptography schemes. Des Codes Crypt 35(3):311–335MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Bonis, De Santis A Randomness in visual cryptography, STACS 2000, LNCS, Vol. 1770:627–638Google Scholar
  9. 9.
    Grajam RL, Knuth DE, Patashnik O (1988) Concrete mathematics, a foundation for computer science. Addison Wesley, BostonGoogle Scholar
  10. 10.
    Hasnat A, Barman D, Mandal SN (2017) Implementation K out of N visual cryptography using K out of K scheme, 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, p 1–7.
  11. 11.
    Hofmeister T, Krause M, Simon HU (1997) Contrast-optimal k out of n secret sharing schemes in visual cryptography, COCOON '97, LNCS, 1276:176–185Google Scholar
  12. 12.
    Horng G, Chen T, Tsai DS (2006) Cheating in visual cryptography. Des Codes Crypt 38(2):219–236MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu CM, Tzeng WG (2007) Cheating prevention in visual cryptography. IEEE Trans Image Process 16(1):36–45MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ito R, Kuwakado H, Tanaka H (1999) Image size invariant visual cryptography. Institute of Electronics, Information and Communication Engineers (IEICE) Transactions E82-A(10):2172–2177Google Scholar
  15. 15.
    John Blesswin A, Visalakshi P, Sivakumar R, Karnan M, Subash J, Bose C (2014) Multi-secret semantic visual cryptographic protocol for securing image communicationsGoogle Scholar
  16. 16.
    Lin SJ, Chen SK, Lin JC (2010) Flip visual cryptography (FVC) with perfect security, conditionally-optimal contrast, and no expansion. J Vis Commun Image Represent 21:900–916CrossRefGoogle Scholar
  17. 17.
    Liu F, Wu CK, Lin XJ (2008) Colour visual cryptography schemes. Institution of Engineering and Technology (IET) Inf Security 2(4):151–165Google Scholar
  18. 18.
    Liu F, Wu C, Lin X (2010) Step construction of visual cryptography schemes. IEEE Transaction of Informationa Forensics Security 5(1):27–38CrossRefGoogle Scholar
  19. 19.
    Myodo E, Takagi K, Miyaji S, Takishima Y (2007) Halftone visual cryptography embedding a natural grayscale image based on error diffusion technique. In: ICME, p 2114–2117Google Scholar
  20. 20.
    Naor M, Shamir A (1995) Visual cryptography. In: Advances in cryptology — Eurocrypt’ 94. Springer-Verlag, Berlin, pp 1–12Google Scholar
  21. 21.
    Sasaki M, Watanabe Y (2014) Formulation of visual secret sharing schemes encrypting multiple images. Proc. 39th IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), p 7391–7395Google Scholar
  22. 22.
    Shyu SJ (2014) Threshold visual cryptographic scheme with meaningful shares. IEEE Signal Processing Letter 21(12):1521–1525CrossRefGoogle Scholar
  23. 23.
    Shyu SJ, Jiang H-W (2013) General constructions for threshold multiple-secret visual cryptographic schemes. IEEE Transact Information Forensics Security 8(5):733–743CrossRefGoogle Scholar
  24. 24.
    Sridhar KP, Baskar S, Shakeel PM et al (2018) Developing brain abnormality recognize system using multi-objective pattern producing neural network. J Ambient Intell Humaniz Comput.
  25. 25.
    Tuyls P, Hollmann HDL, van Lint JH, Tolhuizen LMGM (2005) XOR-based visual cryptography schemes. Des Codes Crypt 37(1):169–186MathSciNetCrossRefGoogle Scholar
  26. 26.
    Verheul ER, van Tilborg HCA (1997) Constructions and properties of k out of n visual secret sharing schemes. Des Codes Crypt 11(2):179–196MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang Z, Arce GR (2006) Halftone visual cryptography through error diffusion. In: ICIP, p 109–112Google Scholar
  28. 28.
    Wang D, Zhang L, Ma N, Li X (2007) Two secret sharing schemes based on boolean operations. Pattern Recogn 40(10):2776–2785CrossRefGoogle Scholar
  29. 29.
    Wang Z, Arce GR, Di Crescenzo G (2009) Halftone visual cryptography via error diffusion. IEEE Transaction and Information and Forensics Security 4(3):383–396CrossRefGoogle Scholar
  30. 30.
    Yang CN, Chen TS (2005) Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recogn Lett 26(2):193–206MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang CN, Chen TS (2007) An image secret sharing scheme with the capability of previvewing the secret image. In: ICME 2007, p 1535–1538Google Scholar
  32. 32.
    Zhou Z, Arce GR, Di Crescenzo G (2006) Halftone visual cryptography. IEEE Trans Image Process 15(8):2441–2453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Science and EngineeringK Ramakrishnan College of EngineeringTiruchirappalliIndia
  2. 2.Information TechnologyKarpagam College of EngineeringCoimbatoreIndia

Personalised recommendations