Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 14, pp 19735–19751 | Cite as

Salient object detection employing regional principal color and texture cues

  • Mudassir RafiEmail author
  • Susanta Mukhopadhyay
Article
  • 29 Downloads

Abstract

Saliency in a scene describes those facets of any stimulus that makes it stand out from the masses. Saliency detection has attracted numerous algorithms in recent past and proved to be an important aspect in object recognition, image compression, classification and retrieval tasks. The present method makes two complementary saliency maps namely color and texture. The method employs superpixel segmentation using Simple Linear Iterative Clustering (SLIC). The tiny regions obtained are further clustered on the basis of homogeneity using DBSCAN. The method also employs two levels of quantization of color that makes the saliency computation easier. Basically, it is an adaptation to the property of the human visual system by which it discards the less frequent colors in detecting the salient objects. Furthermore, color saliency map is computed using the center surround principle. For texture saliency map, Gabor filter is employed as it is proved to be one of the appropriate mechanisms for texture characterization. Finally, the color and texture saliency maps are combined in a non-linear manner to obtain the final saliency map. The experimental results along with the performance measures have established the efficacy of the proposed method.

Keywords

Saliency detection Regional principal color Color saliency Texture saliency 

Notes

References

  1. 1.
    Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient region detection and segmentation. In: International conference on computer vision systems. Springer, pp 66–75Google Scholar
  2. 2.
    Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: IEEE conference on computer vision and pattern recognition, 2009. cvpr 2009, IEEE, pp 1597–1604Google Scholar
  3. 3.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282Google Scholar
  4. 4.
    Chang KY, Liu T L, Chen H T, Lai SH (2011) Fusing generic objectness and visual saliency for salient object detection. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 914–921Google Scholar
  5. 5.
    Chang KY, Liu TL, Lai SH (2011) From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model. In: 2011 IEEE conference on computer vision and pattern recognition (cvpr), IEEE, pp 2129–2136Google Scholar
  6. 6.
    Chen T, Cheng MM, Tan P, Shamir A, Hu SM (2009) Sketch2photo: Internet image montage. ACM Trans Graph (TOG) 28(5):124Google Scholar
  7. 7.
    Chen Zh, Liu Y, Sheng B, Jn Liang, Zhang J, Yb Yuan (2016) Image saliency detection using gabor texture cues. Multimed Tools Appl 75(24):16,943–16,958Google Scholar
  8. 8.
    Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582Google Scholar
  9. 9.
    Clausi DA, Jernigan ME (2000) Designing gabor filters for optimal texture separability. Pattern Recog 33(11):1835–1849Google Scholar
  10. 10.
    Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926Google Scholar
  11. 11.
    Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198MathSciNetzbMATHGoogle Scholar
  12. 12.
    Han J, Ngan KN, Li M, Zhang HJ (2006) Unsupervised extraction of visual attention objects in color images. IEEE Trans Circuits Syst Video Technol 16 (1):141–145Google Scholar
  13. 13.
    Harel J, Koch C, Perona P (2007) Graph-based visual saliency. In: Advances in neural information processing systems, pp 545–552Google Scholar
  14. 14.
    Hiremath P, Pujari J (2008) Content based image retrieval using color boosted salient points and shape features of an image. Int J Image Process 2(1):10–17Google Scholar
  15. 15.
    Hou X, Zhang L (2007 ) Saliency detection: A spectral residual approach. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–8Google Scholar
  16. 16.
    Hou X, Harel J, Koch C (2012) Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34(1):194–201Google Scholar
  17. 17.
    Hu Y, Rajan D, Chia LT (2005) Robust subspace analysis for detecting visual attention regions in images. In: Proceedings of the 13th annual ACM international conference on multimedia, pp 716–724Google Scholar
  18. 18.
    Huang H, Zhang L, Fu TN (2010) Video painting via motion layer manipulation. In: Computer graphics forum, vol 29. Wiley Online Library, pp 2055–2064Google Scholar
  19. 19.
    Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259Google Scholar
  20. 20.
    Ji QG, Fang ZD, Xie ZH, Lu ZM (2013) Video abstraction based on the visual attention model and online clustering. Signal Process Image Commun 28 (3):241–253Google Scholar
  21. 21.
    Jiang P, Ling H, Yu J, Peng J (2013) Salient region detection by ufo: Uniqueness, focusness and objectness. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 1976–1983Google Scholar
  22. 22.
    Jonathan H, Christof K, Pietro P (2006) Graph-based visual saliency. In: Proceedings of the 20th annual conference on neural information processing systems, pp 545–552Google Scholar
  23. 23.
    Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2106–2113Google Scholar
  24. 24.
    Klein D A, Frintrop S (2011) Center-surround divergence of feature statistics for salient object detection. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 2214–2219Google Scholar
  25. 25.
    Kurita T, Otsu N, Abdelmalek N (1992) Maximum likelihood thresholding based on population mixture models. Pattern Recogn 25(10):1231–1240Google Scholar
  26. 26.
    Li A, She X, Sun Q (2013) Color image quality assessment combining saliency and fsim. In: 5th international conference on digital image processing (ICDIP 2013), international society for optics and photonics, vol 8878, p 88780IGoogle Scholar
  27. 27.
    Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010Google Scholar
  28. 28.
    Li X, Li Y, Shen C, Dick A, Van Den Hengel A (2013) Contextual hypergraph modeling for salient object detection. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 3328– 3335Google Scholar
  29. 29.
    Liu F, Gleicher M (2006) Region enhanced scale-invariant saliency detection. In: 2006 IEEE international conference on multimedia and expo. IEEE, pp 1477–1480Google Scholar
  30. 30.
    Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum HY (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367Google Scholar
  31. 31.
    Lou J, Ren M, Wang H (2014) Regional principal color based saliency detection. PloS one 9(11):e112,475Google Scholar
  32. 32.
    Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM international conference on multimedia. ACM, pp 374–381Google Scholar
  33. 33.
    Meger D, Forssen PE, Lai K, Helmer S, McCann S, Southey T, Baumann M, Little JJ, Lowe DG (2008) Curious george: an attentive semantic robot. Robot Auton Syst 56(6):503–511Google Scholar
  34. 34.
    Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607Google Scholar
  35. 35.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66Google Scholar
  36. 36.
    Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 733–740Google Scholar
  37. 37.
    Portilla J, Navarro R, Nestares O, Tabernero A (1996) Texture synthesis-by-analysis method based on a multiscale early-vision model. Opt Eng 35(8):2403–2417Google Scholar
  38. 38.
    Ren YF, Mu ZC (2014) Salient object detection based on global contrast on texture and color. In: 2014 international conference on machine learning and cybernetics (ICMLC), vol 1. IEEE, pp 7–12Google Scholar
  39. 39.
    Rosin PL (2009) A simple method for detecting salient regions. Pattern Recogn 42(11):2363–2371zbMATHGoogle Scholar
  40. 40.
    Rutishauser U, Walther D, Koch C, Perona P (2004) Is bottom-up attention useful for object recognition? In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004, CVPR 2004, vol 2. IEEE, pp II–IIGoogle Scholar
  41. 41.
    Sharma G, Jurie F, Schmid C (2012) Discriminative spatial saliency for image classification. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3506–3513Google Scholar
  42. 42.
    Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 853–860Google Scholar
  43. 43.
    Siagian C, Itti L (2007) Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 29(2):300–312Google Scholar
  44. 44.
    Tatler BW (2007) The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis 7(14):4–4Google Scholar
  45. 45.
    Tian H, Fang Y, Zhao Y, Lin W, Ni R, Zhu Z (2014) Salient region detection by fusing bottom-up and top-down features extracted from a single image. IEEE Trans Image Process 23(10):4389–4398MathSciNetzbMATHGoogle Scholar
  46. 46.
    Valenti R, Sebe N, Gevers T (2009) Image saliency by isocentric curvedness and color. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2185–2192Google Scholar
  47. 47.
    Wang P, Wang J, Zeng G, Feng J, Zha H, Li S (2012) Salient object detection for searched web images via global saliency. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3194–3201Google Scholar
  48. 48.
    Xia C, Qi F, Shi G, Wang P (2015) Nonlocal center–surround reconstruction-based bottom-up saliency estimation. Pattern Recog 48(4):1337–1348Google Scholar
  49. 49.
    Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1155–1162Google Scholar
  50. 50.
    Yu Z, Wong H S (2007) A rule based technique for extraction of visual attention regions based on real-time clustering. IEEE Trans Multimed 9(4):766–784Google Scholar
  51. 51.
    Zhai Y, Shah M (2006) Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th ACM international conference on multimedia. ACM, pp 815–824Google Scholar
  52. 52.
    Zhang L, Yang L, Luo T (2016) Unified saliency detection model using color and texture features. PloS One 11(2):e0149,328Google Scholar
  53. 53.
    Zhou L, Yang Z, Yuan Q, Zhou Z, Hu D (2015) Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans Image Process 24(11):3308–3320MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations