Advertisement

Fast pre-processing hex Chaos triggered color image cryptosystem

  • Sujarani Rajendran
  • Kannan Krithivasan
  • Manivannan DoraipandianEmail author
  • Xiao-Zhi Gao
Article
  • 23 Downloads

Abstract

In the present study, a robust color image cryptosystem based on a novel structure of chaotic pre-processing is proposed, which greatly reduce the execution time and memory usage and also increase the performance of confusion and diffusion phases. Position of pixels are scrambled in confusion phase by applying the chaotic series of hyper Lorenz system. In diffusion phase, a novel structure of bit level merging and circular shifting operation is adopted to strengthen the security level, further an inter – exclusive OR (XOR) operation is executed between each layers (Red, Blue, Green) to obtain cipher image. Evaluation results shows that the proposed pre-processing system has better performance with minimum cost than other available pre-processing methods. Assessment results proves the ability of the algorithm to resist statistical and differential attacks. Comparison of encryption quality assures that the proposed system has better encryption effect than existing one and exhaustive attack analysis proves the robustness. Consequently, these results expose the proposed cryptosystem could be a best fit for secure storage and transfer of images in real-time applications.

Keywords

Hyper-chaotic system Image encryption Lorenz chaotic map Security 

Notes

Acknowledgments

The Authors gratefully acknowledge the Department of Science and Technology, India for Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (SR/FST/ETI-371/2014), (SR/FST/MSI-107/2015) and Tata Realty- IT City – SASTRA Srinivasa Ramanujan Research Cell of our University for the financial support extended to us in carrying out this research work.

References

  1. 1.
    Alawida M, Samsudin A, Sen TJ, Alkhawaldeh RS (2019) A new hybrid digital chaotic system with applications in image encryption. Signal Process 160:45–58.  https://doi.org/10.1016/j.sigpro.2019.02.016 CrossRefGoogle Scholar
  2. 2.
    Anees A (2015) An image encryption scheme based on Lorenz system for low profile applications. 3D res.  https://doi.org/10.1109/ICNC.2008.227
  3. 3.
    Ben Slimane N, Aouf N, Bouallegue K, Machhout M (2018) A novel chaotic image cryptosystem based on DNA sequence operations and single neuron model. Multimed Tools Appl 77:30993–31019.  https://doi.org/10.1007/s11042-018-6145-8 CrossRefGoogle Scholar
  4. 4.
    Cai S, Huang L, Chen X, Xiong X (2018) A symmetric plaintext-related color image encryption system based on bit permutation. Entropy 20:1–20.  https://doi.org/10.3390/e20040282 CrossRefGoogle Scholar
  5. 5.
    Chai X, Fu X, Gan Z et al (2019) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62.  https://doi.org/10.1016/j.sigpro.2018.09.029 CrossRefGoogle Scholar
  6. 6.
    Chai X, Yang K, Gan Z (2016) A new chaos-based image encryption algorithm with dynamic key selection mechanisms. Multimed Tools Appl.  https://doi.org/10.1007/s11042-016-3585-x CrossRefGoogle Scholar
  7. 7.
    Diab H (2018) An efficient chaotic image cryptosystem based on simultaneous permutation and diffusion operations. IEEE Access 6:42227–42244.  https://doi.org/10.1109/ACCESS.2018.2858839 CrossRefGoogle Scholar
  8. 8.
    El S, Farajallah M (2016) A new chaos-based image encryption system. Signal Process Image Commun 41:144–157.  https://doi.org/10.1016/j.image.2015.10.004 CrossRefGoogle Scholar
  9. 9.
    Elgendy F, Sarhan AM, Eltobely TE, el-Zoghdy SF, el-sayed HS, Faragallah OS (2015) Chaos-based model for encryption and decryption of digital images. Multimed Tools Appl 75:11529–11553.  https://doi.org/10.1007/s11042-015-2883-z CrossRefGoogle Scholar
  10. 10.
    Eom S, Huh J-H (2018) The opening capability for security against privacy infringements in the smart grid environment. Mathematics 6:202.  https://doi.org/10.3390/math6100202 CrossRefGoogle Scholar
  11. 11.
    Eom S, Huh JH (2018) Group signature with restrictive linkability: minimizing privacy exposure in ubiquitous environment. J Ambient Intell Humaniz Comput:1–11.  https://doi.org/10.1007/s12652-018-0698-2
  12. 12.
    Fan H, Li M, Liu D, An K (2018) Cryptanalysis of a plaintext-related chaotic RGB image encryption scheme using total plain image characteristics. Multimed Tools Appl 77:20103–20127.  https://doi.org/10.1007/s11042-017-5437-8 CrossRefGoogle Scholar
  13. 13.
    Fu C, Meng W, Zhan Y et al (2013) An efficient and secure medical image protection scheme based on chaotic maps. Comput Biol Med 43:1000–1010.  https://doi.org/10.1016/j.compbiomed.2013.05.005 CrossRefGoogle Scholar
  14. 14.
    Gao Hao-jiang, Zhang Yi-sheng, Liang Shu-yun LD (2006) New chaotic encryption algorithm and the application. In: MINIMICRO Syst. p 655Google Scholar
  15. 15.
    Hu T, Liu Y, Gong L-H, Ouyang C-J (2016) An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn 87:51–66.  https://doi.org/10.1007/s11071-016-3024-6 CrossRefGoogle Scholar
  16. 16.
    Huang L, Cai S, Xiao M, Xiong X (2018) A simple chaotic map-based image encryption system using both plaintext related permutation and diffusion. Entropy 20:1–20.  https://doi.org/10.3390/e20070535 CrossRefGoogle Scholar
  17. 17.
    Huang R, Rhee KH, Uchida S (2014) A parallel image encryption method based on compressive sensing. Multimed Tools Appl 72:71–93CrossRefGoogle Scholar
  18. 18.
    Huang X, Ye G (2014) An image encryption algorithm based on hyper-chaos and DNA sequence. Multimed Tools Appl 72:57–70.  https://doi.org/10.1007/s11042-012-1331-6 CrossRefGoogle Scholar
  19. 19.
    Kadir A, Aili M, Sattar M (2017) Color image encryption scheme using coupled hyper chaotic system with multiple impulse injections. Optik (Stuttg) 129:231–238.  https://doi.org/10.1016/j.ijleo.2016.10.036 CrossRefGoogle Scholar
  20. 20.
    Kalpana J, Murali P (2015) An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik (Stuttg) 126:5703–5709.  https://doi.org/10.1016/j.ijleo.2015.09.091 CrossRefGoogle Scholar
  21. 21.
    Khan M, Shah T (2014) A novel image encryption technique based on Hènon chaotic map and S8 symmetric group. Neural Comput & Applic 25:1717–1722.  https://doi.org/10.1007/s00521-014-1663-4 CrossRefGoogle Scholar
  22. 22.
    Kumar Patro KA, Acharya B (2019) An efficient colour image encryption scheme based on 1-D chaotic maps. J Inf Secur Appl 46:23–41.  https://doi.org/10.1016/j.jisa.2019.02.006 CrossRefGoogle Scholar
  23. 23.
    Kumar S, Sharma RK (2016) Securing color images using two-square cipher associated with Arnold map. Multimed Tools Appl 76:8757–8779.  https://doi.org/10.1007/s11042-016-3504-1 CrossRefGoogle Scholar
  24. 24.
    Kumar M, Vaish A (2017) Encryption of color images using MSVD in DCST domain. Opt Lasers Eng 88:51–59.  https://doi.org/10.1016/j.optlaseng.2016.07.009 CrossRefGoogle Scholar
  25. 25.
    Li C, Luo G, Qin K, Li C (2016) An image encryption scheme based on chaotic tent map. Nonlinear Dyn:1–7.  https://doi.org/10.1109/IWCFTA.2009.48
  26. 26.
    Li Y, Wang C, Chen H (2017) A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt Lasers Eng 90:238–246.  https://doi.org/10.1016/j.optlaseng.2016.10.020 CrossRefGoogle Scholar
  27. 27.
    Liu W, Sun K, He S (2017) SF-SIMM high-dimensional hyperchaotic map and its performance analysis. Nonlinear Dyn 89:2521–2532.  https://doi.org/10.1007/s11071-017-3601-3 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Luo Y, Zhou R, Liu J, Qiu S, Cao Y (2018) An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers. Multimed Tools Appl 77:26191–26217.  https://doi.org/10.1007/s11042-018-5844-5 CrossRefGoogle Scholar
  29. 29.
    Miao Zhang XT (2015) A new algorithm of the combination of image compression and encryption technology based on spatiotemporal cross chaotic map. Multimed Tools Appl 74:11255–11279.  https://doi.org/10.1007/s11042-014-2227-4 CrossRefGoogle Scholar
  30. 30.
    Mirzaei O, Yaghoobi M, Irani H (2012) A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn 67:557–566.  https://doi.org/10.1007/s11071-011-0006-6 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mollaeefar M, Sharif A, Nazari M (2017) A novel encryption scheme for colored image based on high level chaotic maps. Multimed Tools Appl 76:607–629.  https://doi.org/10.1007/s11042-015-3064-9 CrossRefGoogle Scholar
  32. 32.
    Murillo-Escobar MA, Cardoza-Avendaño L, López-Gutiérrez RMC-HC (2017) A double chaotic layer encryption algorithm for clinical signals in telemedicine. J Med Syst 41:41–59.  https://doi.org/10.1007/s10916-017-0698-3 CrossRefGoogle Scholar
  33. 33.
    Naeem EA, Abd Elnaby MM, El-sayed HS et al (2016) Wavelet fusion for encrypting images with a few details. Comput Electr Eng 54:450–470.  https://doi.org/10.1016/j.compeleceng.2015.08.018 CrossRefGoogle Scholar
  34. 34.
    Norouzi B, Mirzakuchaki S (2017) Breaking a novel image encryption scheme based on an improper fractional order chaotic system. Multimed Tools Appl 76:1817–1826.  https://doi.org/10.1007/s11042-015-3085-4 CrossRefGoogle Scholar
  35. 35.
    Norouzi B, Mirzakuchaki S, Seyedzadeh SM, Mosavi MR (2014) A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed Tools Appl 71:1469–1497.  https://doi.org/10.1007/s11042-012-1292-9 CrossRefGoogle Scholar
  36. 36.
    SIPI (2019) Image Database - Misc. http://sipi.usc.edu/database/database.php?volume=misc.
  37. 37.
    Souyah A, Faraoun KM (2016) An image encryption scheme combining chaos-memory cellular automata and weighted histogram. Nonlinear Dyn 86:1–15.  https://doi.org/10.1007/s11071-016-2912-0 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Tan CH, Prabowo TF, Le DP (2016) Breaking an ID-based encryption based on discrete logarithm and factorization problems. Inf Process Lett 116:116–119.  https://doi.org/10.1016/j.ipl.2015.09.014 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Teng L, Wang X, Meng J (2018) A chaotic color image encryption using integrated bit-level permutation. Multimed Tools Appl 77:6883–6896.  https://doi.org/10.1007/s11042-017-4605-1 CrossRefGoogle Scholar
  40. 40.
    ur Rehman A, Liao X, Ashraf R et al (2018) A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik (Stuttg) 159:348–367.  https://doi.org/10.1016/j.ijleo.2018.01.064 CrossRefGoogle Scholar
  41. 41.
    Wang X, Qin X, Liu C (2018) Color image encryption algorithm based on customized globally coupled map lattices. Multimed Tools Appl 78:6191–6209.  https://doi.org/10.1007/s11042-018-6326-5 CrossRefGoogle Scholar
  42. 42.
    Wang X, Zhang H (2015) A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear Dyn:333–346.  https://doi.org/10.1007/s11071-015-2330-8 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang X, Zhao H, Wang M (2019) A new image encryption algorithm with nonlinear-diffusion based on multiple coupled map lattices. Opt Laser Technol 115:42–57.  https://doi.org/10.1016/j.optlastec.2019.02.009 CrossRefGoogle Scholar
  44. 44.
    Wu P. (2019) Research on digital image watermark encryption based on hyperchaos watermark encryption based Pianhui Wu doctor of philosophy. University of DerbyGoogle Scholar
  45. 45.
    Wu X, Li Y, Kurths J (2015) A new color image encryption scheme using CML and a fractional-order chaotic system. PLoS One 10:1–28.  https://doi.org/10.1371/journal.pone.0119660 CrossRefGoogle Scholar
  46. 46.
    Wu X, Wang K, Wang X, Kan H (2017) Lossless chaotic color image cryptosystem based on DNA encryption and entropy. Nonlinear Dyn 90:855–875.  https://doi.org/10.1007/s11071-017-3698-4 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wu Y, Zhou Y, Saveriades G et al (2013) Local Shannon entropy measure with statistical tests for image randomness. Inf Sci (Ny) 222:323–342.  https://doi.org/10.1016/j.ins.2012.07.049 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wu X, Zhu B, Hu Y, Ran Y (2017) A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps. IEEE Access 5:6429–6436.  https://doi.org/10.1109/ACCESS.2017.2692043 CrossRefGoogle Scholar
  49. 49.
    Xu L, Li Z, Li J, Hua W (2016) A novel bit-level image encryption algorithm based on chaotic maps. Opt Lasers Eng 78:17–25.  https://doi.org/10.1016/j.optlaseng.2015.09.007 CrossRefGoogle Scholar
  50. 50.
    Yaghouti Niyat A, Moattar MH, Niazi Torshiz M (2017) Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt Lasers Eng 90:225–237.  https://doi.org/10.1016/j.optlaseng.2016.10.019 CrossRefGoogle Scholar
  51. 51.
    Yao L, Yuan C, Qiang J et al (2017) Asymmetric color image encryption based on singular value decomposition. Opt Lasers Eng 89:80–87.  https://doi.org/10.1016/j.optlaseng.2016.06.007 CrossRefGoogle Scholar
  52. 52.
    Ye G, Huang X (2016) A secure image encryption algorithm based on chaotic maps and SHA-3. Secur Commun NETWORKS 9:2015–2023Google Scholar
  53. 53.
    Yuan HM, Liu Y, Lin T et al (2017) A new parallel image cryptosystem based on 5D hyper-chaotic system. Signal Process Image Commun 52:87–96.  https://doi.org/10.1016/j.image.2017.01.002 CrossRefGoogle Scholar
  54. 54.
    Zhang X, Fan X, Wang J, Zhao Z (2016) A chaos-based image encryption scheme using 2D rectangular transform and dependent substitution. Multimed Tools Appl 75:1745–1763.  https://doi.org/10.1007/s11042-014-2372-9 CrossRefGoogle Scholar
  55. 55.
    Zhang Q, Guo L, Wei X (2013) A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Opt - Int J Light Electron Opt 124:3596–3600.  https://doi.org/10.1016/j.ijleo.2012.11.018 CrossRefGoogle Scholar
  56. 56.
    Zheng Y, Jin J (2014) A novel image encryption scheme based on Henon map and compound spatiotemporal chaos. Multimed Tools Appl 74:7803–7820.  https://doi.org/10.1007/s11042-014-2024-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Sujarani Rajendran
    • 1
  • Kannan Krithivasan
    • 2
  • Manivannan Doraipandian
    • 3
    Email author
  • Xiao-Zhi Gao
    • 4
  1. 1.Department of Computer Science, Srinivasa Ramanujan CentreSASTRA Deemed UniversityKumbakonamIndia
  2. 2.Discrete Mathematics Research Laboratory (DMRL), Department of MathematicsSASTRA Deemed UniversityThanjavurIndia
  3. 3.School Of ComputingSASTRA Deemed UniversityThanjavurIndia
  4. 4.School of ComputingUniversity of Eastern FinlandKuopioFinland

Personalised recommendations