Advertisement

Survey on Single Image based Super-resolution — Implementation Challenges and Solutions

  • Amanjot SinghEmail author
  • Jagroop Singh
Article
  • 2 Downloads

Abstract

Super-resolution includes the techniques which deal with the methods of converting the low-resolution image into the high-resolution image. In this paper, various challenges affecting the implementation of Super-Resolution (SR) along with the detailed survey of SR implementation methods have been presented. Different issues related to the SR have been explored from literature which are limiting the SR implementations. Besides, there are also various techniques to implement the SR, detailed survey of these techniques along with comparison, have been included in this paper. In this work main focus has been given to a single image based super-resolution as it is the more practical type of super-resolution. The basic purpose of the paper is exploring the various possibilities of SR along with practical constraints.

Keywords

Super-resolution Low-resolution (LR) High-resolution(HR) 

Notes

References

  1. 1.
    Abdu Rahiman V, Rohit U, George SN (2016) Modified dictionary learning method for sparsity based single image super-resolution. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), pp 473–477.Google Scholar
  2. 2.
    Acharya T, Tsai P (2007) Computational Foundations of Image Interpolation Algorithms. ACM Ubiquity 8Google Scholar
  3. 3.
    Alam MS, Bognar JG, Hardie RC, Yasuda BJ (2000) Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Trans Instrum Meas 49(5):915–923CrossRefGoogle Scholar
  4. 4.
    Al-falluji R, Youssif A, Guirguis S (2017) Single Image Super Resolution Algorithms: A Survey and Evaluation. Int J Adv Res Comput Eng Technol 6(9):1445–1451Google Scholar
  5. 5.
    Aly HA, Dubois E (2005) Image up-sampling using total variation regularization with a new observation model. IEEE Trans on IP 14(10):1647–1659Google Scholar
  6. 6.
    Amanatiadis A, Andreadis I (2009) A survey on evaluation methods for image interpolation. Meas Sci Technol 20(10):1–9CrossRefGoogle Scholar
  7. 7.
    Baker S, Kanade T (2002) Limits on super-resolution and how to break them. IEEE Trans Pattern Anal Mach Intell 24:1167–1183CrossRefGoogle Scholar
  8. 8.
    Bhagya Raju V, Jaya Sankar K, Naidu CD (2015) Fuzzy based super-resolution multispectral image compression with improved SPIHT. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp 0263–0266.Google Scholar
  9. 9.
    Borman S, Stevenson RL (1998) Super-resolution from image sequences: A review. In: mwscas, IEEE, p. 374Google Scholar
  10. 10.
    Boskovitz V, Guterman H (2002) An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Trans. Fuzzy Syst. 10(2):247–262CrossRefGoogle Scholar
  11. 11.
    Bowen O, Bouganis CS (2008) Real-time image super-resolution using an FPGA. In International Conference on Field Programmable Logic and Applications:89–94Google Scholar
  12. 12.
    L. Brown. “A survey of image registration techniques”, ACM Computing Surveys, 24(4):325–376, 1992.Google Scholar
  13. 13.
    Carcenac M (2009) A modular neural network for super-resolution of human faces. Appl IntellGoogle Scholar
  14. 14.
    Chan TF, Osher S, Shen J (2001) The digital TV filter and nonlinear denosing. IEEE Transaction on Image Processing 10(2):231–241zbMATHCrossRefGoogle Scholar
  15. 15.
    Chang J-Y, Chen J-L (2004) Classifier-augmented median filters for image restoration. IEEE Trans Instrum Meas 53(2):351–356CrossRefGoogle Scholar
  16. 16.
    Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. CVPR 1:275–282Google Scholar
  17. 17.
    Chen J, Chang J, Shieh K (2000) 2-D discrete signal interpolation and its image resampling application using fuzzy rule-based inference. Fuzzy Sets Syst. 114(2):225–238zbMATHCrossRefGoogle Scholar
  18. 18.
    Chen H-C, Wang W-J (2010) Locally edge-adapted distance for image interpolation based on genetic fuzzy system. Expert Syst Appl 37(1):288–297CrossRefGoogle Scholar
  19. 19.
    Chiang MC, Boulte TE (2000) Efficient super-resolution via image warping. Image Vis Comput 18(10):761–771CrossRefGoogle Scholar
  20. 20.
    Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super-resolution. Proc IEEE Conf Comput Vision Pattern Recognit:1–8Google Scholar
  21. 21.
    Datsenko D, Elad M (2007) Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidim Syst Sign Process 18(2-3):103–121MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dong Y, Chan RH, Xu S (2007) A detection statistic for random valued impulse noise. IEEE Trans Image Process 16(4):1112–1120MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dong C, Loy CC, He K (2015) Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI):1–14Google Scholar
  24. 24.
    Dong C, Loy CC, He K, Tang X (2014) Learning a Deep Convolutional Network for Image Super-Resolution. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8692. Springer, ChamGoogle Scholar
  25. 25.
    Dong W, Zhang L, Lukac R, Shi G (2013) Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):533–549MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dubey S, Sahu SBP (2018) Literature Review on Single Image Super Resolution. International Journal of Trend in Scientific Research and Development (IJTSRD):1618–1626Google Scholar
  28. 28.
    Eisemann M, Braunschweig TU (2010) Photo Zoom : High Resolution from Unordered Image Collections. Proc Graph Interface:71–78Google Scholar
  29. 29.
    Eisemann M, Gohlke D, Magnor M (2011) Edge-Constrained Image Compositing. Proc. Graph. Interface {(GI)(GI), pp. 191–198Google Scholar
  30. 30.
    Elad M, Farsiu S, Robinson D, Milanfar P (2004) Advances and challenges in super-resolution. Int J Imaging Syst Technol 14(2):47–57CrossRefGoogle Scholar
  31. 31.
    Elad M, Hel-Or Y (2001) A fast super-resolution reconstruction algorithmfor pure translational motion and common space-invariant blur. IEEE Trans Image Process 10(8):1187–1193zbMATHCrossRefGoogle Scholar
  32. 32.
    M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space invariant blur.”, IEEE Transactions on Image Processing, 10(8):1187,1193, 2001.zbMATHCrossRefGoogle Scholar
  33. 33.
    Emin Yüksel M, Bastürk A (2003) Efficient removal of impulse noise from highly corrupted digital images by a simple neuro-fuzzy operator. AEU-Int J Electron Commun 57(3):214–219CrossRefGoogle Scholar
  34. 34.
    Farbiz F, Menhaj MB (2000) A fuzzy logic control based approach for image filtering. Studies Fuzzyness Soft Comput. 52(1):194–221CrossRefGoogle Scholar
  35. 35.
    Farsiu S, Robinson D, Elad M, Milanfar P (2004) Fast and robust multi-frame super-resolution. IEEE Transaction on Image Processing 13(10):1327–1344CrossRefGoogle Scholar
  36. 36.
    Fattal R (2007) Image up sampling via imposed edge statistics. ACM Trans Graph 26(3):95:1–95:8Google Scholar
  37. 37.
    Freeman WT, Jones TR, Pasztor EC (2002) Example based super-resolution. IEEE Comput Graph Appl 22(2):56–65CrossRefGoogle Scholar
  38. 38.
    Freeman WT, Pasztor EC, Carmichael OT (2000) Learning low level vision. Int J Comput Vis 40:25–47zbMATHCrossRefGoogle Scholar
  39. 39.
    Gajjar PP, Joshi MV (2011) New learning based super-resolution: use of DWT and IGMRF prior. IEEE Trans Image Process 19:1201–1213MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Goldluecke B, Cremers D (2009) Superresolution texture maps for multiview reconstruction. Proc IEEE Int Conf Comput Vis:1677–1684Google Scholar
  41. 41.
    Goldluecke B et al (2014) A Super-resolution Framework for High-Accuracy Multiview Reconstruction To cite this version : HAL Id : hal-01057502 A Super-resolution Framework for High-Accuracy Multiview Reconstruction. Int J Comput Vis 106(2):172–191MathSciNetCrossRefGoogle Scholar
  42. 42.
    Gou S, Liu S, Wu Y, Jiao L Image super-resolution based on the pairwise dictionary selected learning and improved bilateral regularization. IET Image Process 2016, 10(2):101–112.CrossRefGoogle Scholar
  43. 43.
    Hardie R (2007) A fast image super-resolution algorithm using an adaptive Wiener filter. IEEE Trans Image Process 16(12):2953–2964MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hardie RC, Barnard KJ, Armstrong EE (1997) Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans Image Process 6:1621–1633CrossRefGoogle Scholar
  45. 45.
    Haris M, Shakhnarovich G, Ukita N (2018, 2018) Deep Back-Projection Networks For Super-Resolution. CVPR (2):1664–1673Google Scholar
  46. 46.
    Haut JM, Fernandez-Beltran R, Paoletti ME, Plaza J, Plaza A, Pla F (2018) A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution. in IEEE Transactions on Geoscience and Remote Sensing 56(11):6792–6810CrossRefGoogle Scholar
  47. 47.
    Hayat K (2017) Multimedia Super-Resolution via Deep Learning: A Survey. Digit. Signal ProcessGoogle Scholar
  48. 48.
    Hertzmann A, Jacobs CE, Oliver N, Curless B, Salesin DH (2001) Image analogies. Proceedings of the SIGGRAPH, Los Angeles, pp 327–340Google Scholar
  49. 49.
    Herzog R, Eisemann E, Myszkowski K, Seidel H-P (2010) Spatio-temporal upsampling on the GPU. 1:212–291Google Scholar
  50. 50.
    Hou HS, Andrews HC (1978) Cubic splines for image interpolation and digital filtering. IEEE Transaction Acoust Speech Signal Process 26:508–517zbMATHCrossRefGoogle Scholar
  51. 51.
    Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst. 159(15):1929–1951MathSciNetCrossRefGoogle Scholar
  52. 52.
    Hung KW, Siu WC (2009) New motion compensation model via frequency classification for fast video super-resolution. ICIPGoogle Scholar
  53. 53.
    Hwang JW, Lee HS (2004) Adaptive image interpolation based on local gradient features. IEEE Signal Process Lett 11:359–362CrossRefGoogle Scholar
  54. 54.
    M. Irani and S. Peleg., “Motion analysis for image enhancement: Resolution, occlusion and transparency”, Journal of Visual Communication and Image Representation, 4(4):324– 335, 1993.Google Scholar
  55. 55.
    Ishaque SF (2016) A Survey on Single Image Super Resolution Techniques. Int J Adv Res Comput Sci Softw Eng 6(11):120–123Google Scholar
  56. 56.
    Jia K, Gong S (2005) Multi-model tensor face for simultaneous super-resolution and recognition. Proceedings of IEEE International Conference on Computer Vision 2:1683–1690Google Scholar
  57. 57.
    Jia X, Li F, Fraser D (2008) Universal HMT based super resolution forremote sensing images. IEEE International Conference on Image Processing:333–336Google Scholar
  58. 58.
    Ju Y, Lee YJ (2010) Nonlinear image upsampling method based on radial basis function interpolation. IEEE Trans Image Process 19:2682–2692MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Kappeler A, Yoo S, Dai Q, Katsaggelos AK (2016) Video Super-Resolution With Convolutional Neural Networks. IEEE Transactions on Computational Imaging 2(2):109–122.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Kim H, Cha Y, Kim S (2011) Curvature interpolation method for image zooming. IEEE Trans Image Process 20:1895–1903MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Kim K, Kwon Y (2008), “Example-based learning for single image super-resolution and jpeg artifact removal,” Technical Report 173, Max Planck Institute.Google Scholar
  62. 62.
    Kim KI, Kwon Y (2010) Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32(6):1127–1133CrossRefGoogle Scholar
  63. 63.
    Kim J, Lee JK, Lee KM (2016) Accurate Image Super-Resolution Using Very Deep Convolutional Networks. CVPR:1646–1654Google Scholar
  64. 64.
    Kim J, Lee JK, Lee KM (2016) Deeply-Recursive Convolutional Network for Image Super-Resolution. CVPRGoogle Scholar
  65. 65.
    Kumar N, Deswal PK, Mehta J, Sethi A (2012) Neural network based single image super-resolution. 11th Symposium on Neural Network Applications in Electrical Engineering:213–218.Google Scholar
  66. 66.
    Kumar N, Sethi A (2016) Fast Learning-Based Single Image Super-Resolution. IEEE Transactions on Multimedia 18(8):1504–1515.CrossRefGoogle Scholar
  67. 67.
    Lee S-J, Kang M-C, Uhm K-H, Ko S-J (2016) An edge-guided image interpolation method using Taylor series approximation. IEEE Transactions on Consumer Electronics 62(2):159–165. CrossRefGoogle Scholar
  68. 68.
    Lee S-J, Ouyang C-S, Du S-H (2003) A neuro-fuzzy approach for segmentation of human objects in image sequences. IEEE Trans Syst, Man, Cybern, B Cybern 33(3):420–437CrossRefGoogle Scholar
  69. 69.
    Lee X, Zhang Y-Q, Leon-Garcia A (1995) Information loss recovery for block-based image coding techniques-a fuzzy logic approach. IEEE Trans Image Process 4(3):259–273CrossRefGoogle Scholar
  70. 70.
    X. Li and M. T. Orchard, “New edge-directed interpolation”, IEEE Transactions on Image Processing, 10:1521– 1527.Google Scholar
  71. 71.
    Lim B, Lee KM (2017) Enhanced Deep Residual Networks for Single Image Super-Resolution. CVPRWGoogle Scholar
  72. 72.
    Lin C-T, Lee Y-C, Pu H-C (2000) Satellite sensor image classification using cascaded architecture of neural fuzzy network. IEEE Trans Geosci Remote Sens 38(2):1033–1043CrossRefGoogle Scholar
  73. 73.
    Lin Z, Shum H-Y (2004) Fundamental limits on reconstruction-based super-resolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 26(1):83–97CrossRefGoogle Scholar
  74. 74.
    Liu CM, Luo XN (2011) Image enlargement via interpolatory subdivision. IET Image Process 5:567–571MathSciNetCrossRefGoogle Scholar
  75. 75.
    C. Liu, H. Shum, and W. Freeman., “Face hallucination: Theory and practice”, 75(1):115–134.Google Scholar
  76. 76.
    Liu Z-S, Siu W-C, Huang J-J (2015) Image super-resolution via hybrid NEDI and wavelet-based scheme”, 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1131–1136, DOI: 10.1109/APSIPA.2015.7415447, IEEE Conference PublicationsGoogle Scholar
  77. 77.
    Mallat S, Yu G (2010) Super-resolution with sparse mixing estimators. IEEE Trans Image Process 19(11):2889–2900MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Milanfar P (2010) Super-Resolution Imaging. CRC Press, Boca RatonGoogle Scholar
  79. 79.
    Moitra S (2017) Single-Image Super-Resolution Techniques: A Review. IJSART 3(4)Google Scholar
  80. 80.
    Morse BS, Schwartzwald D (2001) Image magnification using level-set reconstruction. CVPR 1:333–340Google Scholar
  81. 81.
    Mousavi H, Monga V (2017) Sparsity-based Color Image Super-resolution via Exploiting Cross Channel Constraints. IEEE Trans Image Process PP(99):1.  https://doi.org/10.1109/TIP.2017.2704443 MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Nedeljkovic I (2004) Image classification based on fuzzy logic. Int Archives Photogram, Remote Sens Spatial Inf Sci 13(4):1–34Google Scholar
  83. 83.
    Nejiya AK, Wilscy M (2013) Example based super-resolution using fuzzy clustering and sparse neighbor embedding. 2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 251–256, IEEE Conference PublicationsGoogle Scholar
  84. 84.
    Nguyen N, Milanfar P (2000) A wavelet-based interpolation-restoration method for superresolution. Circuits Syst and Signal Process 19:321–338zbMATHCrossRefGoogle Scholar
  85. 85.
    Pham D, Prince J (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imag. 18(9):737–752CrossRefGoogle Scholar
  86. 86.
    Pham TQ, Vliet LJ, Schutte K (2006) Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Applied Signal ProcessingGoogle Scholar
  87. 87.
    Pickup LC, Roberts SJ, Zisserman A (2006) Optimizing and learning for super-resolution. In British Machine Vision Conference 2:439–448Google Scholar
  88. 88.
    Purkait P, Chanda B (2012) Image upscaling using multiple dictionaries of natural image patches. In Proc. 11th ACCV, pp. 284–295CrossRefGoogle Scholar
  89. 89.
    Purkait HP, Pal NR, Chanda B (2014) A Fuzzy-Rule-Based Approach for Single Frame Super-resolution. IEEE Trans Image Process 23(5)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Rhee S, Kang MG (1999) Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt Eng 38:1348–1356CrossRefGoogle Scholar
  91. 91.
    Robert G (1981) Keys (1981), “Cubic Convolution Interpolation for Digital Image Processing”. IEEE Trans Acoust Speech Signal Process ASSP-29(6):1153–1160zbMATHGoogle Scholar
  92. 92.
    Robinson D, Milanfar P (2004) Fundamental performance limits in image registration. IEEE Trans Image Process 13(9):1185–1199CrossRefGoogle Scholar
  93. 93.
    Robinson D, Milanfar P (2006) Statistical performance analysis of super-resolution. IEEE Transactions on Image Processing 15(6):1413–1428CrossRefGoogle Scholar
  94. 94.
    Rujul RRM, Makwana R (2013) Survey on Single image Super Resolution Techniques. IOSR J Electron Commun Eng 5(5):23–33CrossRefGoogle Scholar
  95. 95.
    Russo F (1999) Fire operators for image processing. Fuzzy Sets Syst 103(2):265–275MathSciNetCrossRefGoogle Scholar
  96. 96.
    Sajjad M, Ejaz N, Baik SW (2014) Multi-kernel based adaptive interpolation for image super-resolution. Multimed Tools Appl 72:2063–2085CrossRefGoogle Scholar
  97. 97.
    Sajjad M, Ejaz N, Mehmood I, Baik SW (2013) Digital image super-resolution using adaptive interpolation based on Gaussian function. Springer-Multimedia Tools Applications:1–17Google Scholar
  98. 98.
    Salvador J, Pérez-Pellitero E, Kochale A (2014) Robust single-image super-resolution using cross-scale self-similarity. 2014 IEEE International Conference on Image Processing (ICIP), Paris, pp 2135–2139. Google Scholar
  99. 99.
    Schulte S, Nachtegael M, De Witte V, Van der Weken D, Kerre E (2006) A fuzzy impulse noise detection and reduction method. IEEE Trans Image Process 15(5):1153–1162CrossRefGoogle Scholar
  100. 100.
    Schulte S, Witte VD, Nachtegael M, der Weken DV, Kerre EE (2007) Fuzzy random impulse noise reduction method. Fuzzy Sets Syst 158(3):270–283MathSciNetCrossRefGoogle Scholar
  101. 101.
    Shan Q, Li Z, Jia J, Tang CK (2008) Fast image/video up sampling. ACM Transactions on Graphics SIGGRAPH ASIA)Google Scholar
  102. 102.
    Shen H, Zhang L, Huang B, Li P (2007) A MAP approach for joint motion estimation, segmentation and super-resolution. IEEE Trans Image Process 16(2):479–490MathSciNetCrossRefGoogle Scholar
  103. 103.
    Shi W et al (2016) Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, pp. 1874–1883Google Scholar
  104. 104.
    Singh A, Singh J (2016) Super-resolution Applications in Modern Digital Image Processing. International Journal of Computer Applications 150(2):0975–8887CrossRefGoogle Scholar
  105. 105.
    Singh A, Singh J (2016) Comparative Analysis of Gaussian Filter with Wavelet Denoising for Various Noises Present in Images. Indian J Sci Technol 9(47). Google Scholar
  106. 106.
    Singh A, Singh J (2017) Image Upscaling and Denoising with Gaussian filter in Coloured Images-A Performance Analysis. International Journal of Engineering and Technology (IJET) 9(3):2083–2090.  https://doi.org/10.21817/ijet/2017/v9i3/170903133 CrossRefGoogle Scholar
  107. 107.
    Stathakis D, Vasilakos A (2006) Comparison of computational intelligence based classification techniques for remotely sensed optical image classification. IEEE Trans Geosc Remote Sens 44(8):2305–2318CrossRefGoogle Scholar
  108. 108.
    Sun J, Xu Z, Shum H-Y (2008) Image super-resolution using gradient profile prior. Proc IEEE Conf Computer Vision Pattern Recognition:1–8Google Scholar
  109. 109.
    Sun J, Xu Z, Shum H-Y (2011) Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans Image Process 20(6):1529–1542MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Suresh KV, Rajagopalan AN (2007) Robust and computationally efficient super-resolution algorithm. Opt Soc Am JA Opt Image Sci 24:984–992CrossRefGoogle Scholar
  111. 111.
    Suresha D, Prakash HN (2016) Single picture super-resolution of natural images using N-Neighbor Adaptive Bilinear Interpolation and absolute asymmetry based wavelet hard thresholding. 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 387–393, IEEE Conference PublicationsGoogle Scholar
  112. 112.
    Suzuki J, Furukawa I (2000) Application of super high definition images in telemedicine: system requirements and technologies for teleradiology and telepathology. Multimed Tools Appl 12:7–38zbMATHCrossRefGoogle Scholar
  113. 113.
    Tai Y-W, Liu S, Brown MS, Lin S (2010) Super-resolution using edge prior and single image detail synthesis. Proc IEEE Conf Comput Vision Pattern Recognit:2400–2407Google Scholar
  114. 114.
    Tam WS, Kok CW, Siu WC (2010) A modified edge directed interpolation for images. Journal of Electronic Imaging 19(1), 013011):1–20CrossRefGoogle Scholar
  115. 115.
    Tang Y, Shao L (2017) Pairwise Operator Learning for Patch-Based Single-Image Super-Resolution. IEEE Trans Image Process 26(2):994–1003.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Tang Y, Yuan Y Learning From Errors in Super-Resolution. IEEE Transactions on Cybernetics 2014, 44(11):2143–2154.CrossRefGoogle Scholar
  117. 117.
    Tatem J, Lewis HG, Atkinson PM, Nixon MS (2001) Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Trans Geosci Remote Sens 39(4):781–796.CrossRefGoogle Scholar
  118. 118.
    The Man, N, Vinh TQ (2016) Image Super-Resolution Using Image Registration and Neural Network Based Interpolation. 2016 International Conference on Advanced Computing and Applications (ACOMP), pp. 164–167Google Scholar
  119. 119.
    Tian J, Ma K-K (2010) Stochastic super-resolution image reconstruction. J Vis Commun Image Represent 21:232–244CrossRefGoogle Scholar
  120. 120.
    Tian J, Ma K-K (2007) Edge-adaptive super-resolution image reconstruction using a Markov chain Monte Carlo approach. Proceedings of the International Conference on Information, Communications and Signal Processing, Singapore, pp 1–5Google Scholar
  121. 121.
    Tian F, Zhou W, Shang YX, Liao Q (2016) Anchored neighborhood regression based single image super-resolution from self-examples. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, pp 2827–2831Google Scholar
  122. 122.
    Ting H, Hang H (1997) Edge preserving interpolation of digital images using fuzzy inference. J Vis Commun Image Represent 8(4):338–355CrossRefGoogle Scholar
  123. 123.
    Tom BC, Katsaggelos AK (1995) Reconstuction of a high-resolution image by simultaneous registration, restoration and interpolation of low-resolution images. Proceedings of the IEEE International Conference on Image Processing 2:2539Google Scholar
  124. 124.
    Tsai RY, Huang TS (1984) Multiframe image restoration and registration. In: Huang, T.S. (ed.) Advances in Computer Vision and Image Processing, 1(2), pp. 317-339Google Scholar
  125. 125.
    Unser M, Aldroubi A, Eden M (1991) Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13:277–285CrossRefGoogle Scholar
  126. 126.
    Van De Ville D, Nachtegael M, Van der Weken D, Kerre E, Philips W, Lemahieu I (2003) Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11(4):429–436CrossRefGoogle Scholar
  127. 127.
    van Eekeren WM, Schutte K, Oudegeest OR, van Vilet LJ (2007) Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP Journal on Advances in Signal ProcessingGoogle Scholar
  128. 128.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  129. 129.
    Wang Q, Tang X, Shum HY (2010) Patch based blind image super-resolution. CVPRGoogle Scholar
  130. 130.
    Wang L, Xiang S, Meng G, Wu H, Pan C (2013) Edge-Directed Single-Image Super-Resolution Via Adaptive Gradient Magnitude Self-Interpolation. IEEE Transactions on Circuits and Systems for Video Technology 23(8):1289–1299. CrossRefGoogle Scholar
  131. 131.
    Wang S, Zhang D, Liang Y, Pan Q (2012) Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. Proc IEEE Conf CVPR:2216–2223Google Scholar
  132. 132.
    Wang J, Zhu S, Gong Y (2010) Resolution enhancement based on learning the sparse association of image patches. Pattern Recogn Lett 31:1–10CrossRefGoogle Scholar
  133. 133.
    Wei D (2016) Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Processing 10(9):1052–1061.CrossRefGoogle Scholar
  134. 134.
    Xiong Z, Sun X, Wu F (2010) Robust web image/video super-resolution. IEEE Trans Image Process 19(8):2017–2028MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Xu H, Zhu G, Peng F, Wang D (2004) Adaptive fuzzy switching filter for images corrupted by impulse noise. Proc ICCCAS 2:792–795Google Scholar
  136. 136.
    Yamanaka J, Kuwashima S, Kurita T (2017) Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. ICONIPS:1–9Google Scholar
  137. 137.
    Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Yang Z, Zhang K, Liang Y, J. W. B (2017) Single Image Super-Resolution with a Parameter Economic Residual-Like Convolutional. Neural Network. Lecture Notes in Computer Science, vol 10132. Springer, Cham 1:353–364Google Scholar
  139. 139.
    Yoon Y, Jeon H-G, Yoo D, Lee J-Y, Kweon IS (2017) Light-Field Image Super-Resolution Using Convolutional Neural Network. IEEE Signal Processing Letters 24(6):848–852.CrossRefGoogle Scholar
  140. 140.
    Yue H, Sun X, Yang J, Wu F (2013) Landmark Image Super-Resolution by Retrieving Web Images. IEEE Trans Image Process 22(12):4865–4878MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Zhang K, Gao X, Tao D, Li X (2013) Single Image Super-Resolution with Multiscale Similarity Learning. IEEE Transactions on Neural Networks and Learning Systems 24(10):1648–1659. zbMATHCrossRefGoogle Scholar
  142. 142.
    Zhang Y, Li K, Wang L, Zhong B, Fu YUN (2018) Image Super-Resolution Using Very Deep Residual Channel Attention Networks. ECCV 2018CrossRefGoogle Scholar
  143. 143.
    Zhu F, Li J, Zhu B, Ma D (2010) Super-resolution image reconstruction based on three-step-training neural networks. J Syst Eng Electron 21(6):934–940.CrossRefGoogle Scholar
  144. 144.
    Zhu S, Zeng B, Zeng L, Gabbouj M (2016) Image Interpolation Based on Non-local Geometric Similarities and Directional Gradients. IEEE Transactions on Multimedia 18(9):1707–1719.CrossRefGoogle Scholar
  145. 145.
    Zibetti MVW, Mayer J (2006) Outlier robust and edge-preserving simultaneous super-resolution. In Proceedings of IEEE International Conference on Image Processing:1741–1744Google Scholar
  146. 146.
    Zitová B, Flusser J (2003) Image registration methods: a survey. Image and Vision Computing 21(11):977–1000CrossRefGoogle Scholar
  147. 147.
    Zomet A, Peleg S (2000) Efficient super-resolution and applications to mosaics. Proceedings of International Conference on Pattern Recognition:579–583Google Scholar
  148. 148.
    Zomet A, Rav-Acha A, Peleg S (2001) Robust super-resolution. Proceedings of the IEEE Workshop on Applications of Computer Vision:645–650Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research ScholarI.K.G. P.T.UJalandharIndia
  2. 2.School of Electronics and Electrical EngineeringLovely Professional UniversityPhagwaraIndia
  3. 3.Department of Electronics and Communication EngineeringDAVIETJalandharIndia

Personalised recommendations