Biomedical image retrieval by using local directional edge binary patterns and Zernike moments

  • G. SucharithaEmail author
  • Ranjan Kumar Senapati


This paper presents an efficient approach with the reduced length of feature vector for biomedical image retrieval by using global and local features of an image. In order to extract the local features, a new algorithm, local directional edge binary pattern (LDEBP) has been designed. It gathers information from all the possible directions, i.e., 00, 450, 900 and 1350 for every pixel in the image. The directional information is calculated based on the sign code magnitudes of local differences from the center pixel to its directional pixels. For every pixel, four edges will be calculated by using all the directional information. Lower order Zernike moments are used for extracting the global and shape features of an image. The combination of shape and texture descriptors for biomedical image retrieval showed significant results compared to the state of the art algorithms like LDEP, ZM and LBDP on benchmark database like Emphysema-CT and OASIS-MRI.


Local features Global features Local directional edge binary pattern Zernike moments 



  1. 1.
  2. 2.
    Chen Z, Sun SK (2010) A Zernike moment phase-based descriptor for local image representation and matching. IEEE Trans Image Process 19(1):205–219MathSciNetCrossRefGoogle Scholar
  3. 3.
    Daras P, Manolopoulou S, Axenopoulos A (2011) Search and retrieval of rich media objects supporting multiple multimodal queries. IEEE Transactions on Multimedia 14(3):734–746CrossRefGoogle Scholar
  4. 4.
    Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Processing Letters 22(9):1215–1219CrossRefGoogle Scholar
  5. 5.
    Dubey SR, Singh SK, Singh RK (2016) Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE Journal of Biomedical and Health Informatics 20(4):1139–1147CrossRefGoogle Scholar
  6. 6.
    Emphysema-CT database. Available: database/
  7. 7.
    Felipe JC, Traina AJM, Traina C (2003) Retrieval by content of medical images using texture for tissue identification. Proc. of 16th IEEE Symposium on Computer-Based Medical Systems (CBMS’03) IEEEGoogle Scholar
  8. 8.
    He S, Soraghan JJ, O’Reilly BF, Xing D (2009) Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans Biomed Eng 56(7):1864–1870CrossRefGoogle Scholar
  9. 9.
    Hwang SK, Kim WY (2006) A novel approach to the fast computation of Zernike moments. Pattern Recogn 39(11):2065–2076CrossRefGoogle Scholar
  10. 10.
    Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  11. 11.
    Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28(10):1240–1249CrossRefGoogle Scholar
  12. 12.
    Kokare M, Chatterji BN, Biswas PK (2002) A survey on current content based image retrieval methods. IETE J Res 48(3–4):261–271CrossRefGoogle Scholar
  13. 13.
    Kumar Y, Aggarwal A, Tiwari S, Singh K (2018) An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomedical Signal Processing and Control 39:459–473CrossRefGoogle Scholar
  14. 14.
    Lazaridis M, Axenopoulos A, Rafailidis D, Daras P (2013) Multimedia search and retrieval using multimodal annotation propagation and indexing techniques. Signal Process Image Commun 28(4):351–367CrossRefGoogle Scholar
  15. 15.
    Li S, Lee MC, Pun CM (2009) Complex Zernike moments features for shape-based image retrieval. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 39(1):227–237CrossRefGoogle Scholar
  16. 16.
    Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282CrossRefGoogle Scholar
  17. 17.
    Müller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications-clinical benefits and future directions. Int J Med Inform 73(1):1–23CrossRefGoogle Scholar
  18. 18.
    OASIS-MRI database. Available:
  19. 19.
    Peng SH, Kim DH, Lee SL, Lim MK (2010) Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images. Comput Biol Med 40(11–12):931–942CrossRefGoogle Scholar
  20. 20.
    Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2010) Wavelet optimization for content-based image retrieval in medical databases. Med Image Anal 14(2):227–241CrossRefGoogle Scholar
  21. 21.
    Rahman MM, Antani SK, Thoma GR (2011) A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback. IEEE Transon Information Technology in Biomedicine 15(4):640–646CrossRefGoogle Scholar
  22. 22.
    Song J, Gao L, Liu L, Zhu X, Sebe N (2018) Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn 75:175–187CrossRefGoogle Scholar
  23. 23.
    Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen HT (2017) From deterministic to generative: multi-modal stochastic RNNs for video captioning. arXiv preprint arXiv:1708.02478Google Scholar
  24. 24.
    Song J, He T, Gao L, Xu X, Hanjalic A, Shen HT (2018) Binary generative adversarial networks for image retrieval. In Thirty-Second AAAI Conference on Artificial IntelligenceGoogle Scholar
  25. 25.
    Song J, Zhang H, Li X, Gao L, Wang M, Hong R (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 27(7):3210–3221MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sorensen L, Shaker SB, Bruijne MD (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29(2):559–569CrossRefGoogle Scholar
  27. 27.
    Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479CrossRefGoogle Scholar
  28. 28.
    Subrahmanyam M, QM Jonathan W (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412CrossRefGoogle Scholar
  29. 29.
    Subrahmanyam M, QM Jonathan W (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics 18(3):929–938CrossRefGoogle Scholar
  30. 30.
    Subrahmanyam M, QM Jonathan W (2014) MRI and CT image indexing and retrieval using local mesh peak valley edge patterns. Signal Process Image Commun 29(3):400–409CrossRefGoogle Scholar
  31. 31.
    Subrahmanyam M, QM Jonathan W (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514CrossRefGoogle Scholar
  32. 32.
    Sucharitha G, K.Senapati R (2017) Shape Based Image Retrieval using Lower Order Zernike Moments. International Journal of Electrical and Computer Engineering 7(3):1651–1660Google Scholar
  33. 33.
    Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735CrossRefGoogle Scholar
  34. 34.
    Traina AJM, Castañón CAB, Traina C (2003) Multiwavemed: a system for medical image retrieval through wavelets transformations Proc. of 16th IEEE Symposium on Computer-Based Medical Systems (CBMS’03), IEEEGoogle Scholar
  35. 35.
    Ul Hussain S, Triggs B (2012) Visual recognition using local quantized patterns. Proc of Computer Vision–ECCV 2012, Springer, Berlin, Heidelberg, pp. 716–729CrossRefGoogle Scholar
  36. 36.
    Unay D, Ekin A, Jasinschi RS (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans Inf Technol Biomed 14(4):897–903CrossRefGoogle Scholar
  37. 37.
    Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236CrossRefGoogle Scholar
  38. 38.
    Vipparthi SK, Murala S, Gonde AB, Wu QMJ (2016) Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput Vis 10(3):182–192CrossRefGoogle Scholar
  39. 39.
    Zhu L, Shen J, Xie L, Cheng Z (2016) Unsupervised topic hypergraph hashing for efficient mobile image retrieval. IEEE Transactions on Cybernetics 47(11):3941–3954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECE, Faculty of Science & TechnologyICFAI Foundation for Higher EducationHyderabadIndia
  2. 2.Department of ECEVNR Vignana Jyothi Institute of Engineering &TechnologyHyderabadIndia

Personalised recommendations