Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 24, pp 35053–35073 | Cite as

Retinal vessel segmentation using enhanced fuzzy min-max neural network

  • R. S. BiyaniEmail author
  • B. M. Patre
  • U. V. Kulkarni
Article
  • 39 Downloads

Abstract

Automated segmentation of retinal vessels plays a pivotal role in early diagnosis of ophthalmic disorders. In this paper, a blood vessel segmentation algorithm using an enhanced fuzzy min-max neural network supervised classifier is proposed. The input to the network is an optimal 11-D feature vector which consists of spatial as well as frequency domain features extracted from each pixel of a fundus image. The essence of the method is its hyperbox classifier which performs online learning and gives binary output without any need of post-processing. The method is tested on publicly available databases DRIVE and STARE. The results are compared with the existing methods in the literature. The proposed method exhibits efficient performance and can be implemented in computer aided screening and diagnosis of retinal diseases. The method attains an average accuracy, sensitivity and specificity of 95.73%, 74.75% and 97.81% on DRIVE database and 95.51%, 74.65% and 97.11% on STARE database, respectively.

Keywords

Diabetic retinopathy Vessel segmentation Hyperbox Fuzzy min-max neural network 

Notes

Compliance with Ethical Standards

Conflict of interests

There is no conflict of interest declared by any of the authors.

Ethical Approval

The article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208CrossRefGoogle Scholar
  2. 2.
    Asghari MH, Jalali B (2015) Edge detection in digital images using dispersive phase stretch transform. International Journal of Biomedical Imaging 2015:1–7CrossRefGoogle Scholar
  3. 3.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering, Medical Image Computing and Computer Assisted Intervention MICCAI-98, pp 130–137CrossRefGoogle Scholar
  4. 4.
    Franklin SW, Rajan SE (2014) Retinal vessel segmentation employing ann technique by gabor and moment invariants-based features. Appl Soft Comput 22:94–100CrossRefGoogle Scholar
  5. 5.
    Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59:2538–2548CrossRefGoogle Scholar
  6. 6.
    Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11:769–783CrossRefGoogle Scholar
  7. 7.
    Gonzalez RC, Woods ASLERE (2010) Digital Image Processing Using MATLAB, 2nd edn. McGraw Hill Education, New YorkGoogle Scholar
  8. 8.
    Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19:203–210CrossRefGoogle Scholar
  9. 9.
    International Diabetes Federation (2015). IDF diabetes atlas, 7th ed. ISBN: 978-2-930229-81-2Google Scholar
  10. 10.
    Kovesi P (1999) Image features from phase congruency. Videre: A J Comput Vis Res MIT Press 1:1–27Google Scholar
  11. 11.
    Lupascu C, Tegolo D, Trucco E (2010) Fabc: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14:1267–1274CrossRefGoogle Scholar
  12. 12.
    Marin D, Aquino A, Gegundez-Arias M, Bravo J (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based feature. IEEE Trans Med Imaging 30:146–158CrossRefGoogle Scholar
  13. 13.
    Mohammed MF, Lim CP (2015) An enhanced fuzzy min—max neural network for pattern classification. IEEE Trans Neural Netw Learn Syst 26:417–429MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mookiah MR, Acharya U, Chua CK, Lim CM, Ng E, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: A review. Comput Biol Med 43:2136–2155CrossRefGoogle Scholar
  15. 15.
    Niemeijer M, Staal J, Van-ginneken B, Loog M, Abramoff M (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick JM, Sonka M (eds) SPIE Medical Imaging. SPIE, vol 24, pp 648–656Google Scholar
  16. 16.
    Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26:1357–1365CrossRefGoogle Scholar
  17. 17.
    Roychowdhury S, Koozekanani DD, Parhi KK (2015) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inf 19:1118–1128Google Scholar
  18. 18.
    Simpson PK (1992) Fuzzy min-max neural networks-i classification. IEEE Trans Neural Netw 3:776–786CrossRefGoogle Scholar
  19. 19.
    Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British J Ophthalmol 83:902–910CrossRefGoogle Scholar
  20. 20.
    Soares J, Leandro J, Cesar R, Jelinek H, Cree M (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222CrossRefGoogle Scholar
  21. 21.
    Staal J, Abramoff MD, Niemeijer M, Viergever M, Van-Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509CrossRefGoogle Scholar
  22. 22.
    Vega R, Sanchez-Ante G, Falcon-Morales LE, Sossa H, Guevara E (2015) Retinal vessel extraction using lattice neural networks with dendritic processing. Comput Biol Med 58:20–30CrossRefGoogle Scholar
  23. 23.
    Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717CrossRefGoogle Scholar
  24. 24.
    You X, Peng Q, Yuan Y, Cheung YM, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44:2314–2324CrossRefGoogle Scholar
  25. 25.
    Zhu C, Zou B, Zhao R, Cui J, Duan X, Chen Z, Liang Y (2017) Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imaging Graph 55:68–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Instrumentation EngineeringShri Guru Gobind Singhji Institute of Engineering and TechnologyNandedIndia
  2. 2.Department of Computer Science and EngineeringShri Guru Gobind Singhji Institute of Engineering and TechnologyNandedIndia

Personalised recommendations