Multimedia Tools and Applications

, Volume 78, Issue 22, pp 31823–31845 | Cite as

Adaptive enhancement of underwater images using multi-objective PSO

  • Rajni SethiEmail author
  • Indu Sreedevi


Underwater images have poor clarity and bad contrast due to low illumination in deep water. Moreover, underwater images are bluish-green in appearance due to inherent wavelength absorption property of water. Therefore, the study of underwater images is a difficult task. Being computationally simple, histogram-based enhancement techniques are obvious choice for improvement of contrast and color of underwater images. However, due to lack of any guidance mechanism, these techniques can overstretch the histogram leading to artifacts in the image. Hence, an adaptive method named ‘Contrast and Information Enhancement of Underwater Images’ (CIEUI) is proposed, which enhances underwater images by improving their contrast and information content using Multi-Objective Particle Swarm Optimization (MOPSO). Objective functions of MOPSO are chosen to act as guiding mechanism to ensure color & contrast correction and information enhancement respectively without introducing artifacts. Computed results not only have good contrast and color performance but also have better information content. The proposed CIEUI technique performs quantitatively and qualitatively better as compared to state-of-the-art algorithms.


Underwater Images Image Enhancement MOPSO Color correction Fuzzy logic 



  1. 1.
    Abdul Ghani AS, Mat Isa NA (2017) Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification. Comput Electron Agric 141(C):181–195. CrossRefGoogle Scholar
  2. 2.
    AbuNaser A, Doush IA, Mansour N, Alshattnawi S (2015) Underwater Image Enhancement Using Particle Swarm Optimization. J Intell Syst 24(1):99–115Google Scholar
  3. 3.
    Alvarez-Benitez JE, Everson RM, Fieldsend JE (2005) A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 459–473CrossRefGoogle Scholar
  4. 4.
    Ancuti CO, Ancuti C, De Vleeschouwer C, Bekaert P (2018) Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans Image Process 27(1):379–393. MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berkenkamp, L. (2009). Discover the Oceans: The World’s Largest Ecosystem. Nomad PressGoogle Scholar
  6. 6.
    Buchsbaum G (1980) A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1):1–26. CrossRefGoogle Scholar
  7. 7.
    Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing. MTS/IEEE Seattle, OCEANS 2010. doi:10.1109/OCEANS.2010.5664428Google Scholar
  8. 8.
    Chambah M, Semani D, Renouf A, Courtellemont P, Rizzi A (2003) Underwater color constancy: enhancement of automatic live fish recognition. In Electronic Imaging 2004 (pp. 157–168).Google Scholar
  9. 9.
    Chao L, Wang M (2010) Removal of water scattering. ICCET 2010–2010 International Conference on Computer Engineering and Technology, Proceedings, 2, 35–39. doi:10.1109/ICCET.2010.5485339Google Scholar
  10. 10.
    Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769. MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279CrossRefGoogle Scholar
  12. 12.
    Duarte A, Codevilla F, Gaya JDO, Botelho SSC (2016) A dataset to evaluate underwater image restoration methods. In OCEANS 2016 - Shanghai (pp. 1–6). doi:10.1109/OCEANSAP.2016.7485524Google Scholar
  13. 13.
    Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic Red-Channel underwater image restoration. J Vis Commun Image Represent 26:132–145. CrossRefGoogle Scholar
  14. 14.
    Gao Y, Li H, Wen S (2016) Restoration and enhancement of underwater images based on bright channel prior. Mathematical Problems in Engineering, 2016.Google Scholar
  15. 15.
    Garcia R, Nicosevici T, Cufí X (2002) On the way to solve lighting problems in underwater imaging. In OCEANS'02 MTS/IEEE. IEEE 2:1018–1024Google Scholar
  16. 16.
    Garg D, Garg NK, Kumar M (2018) Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimed Tools Appl 77(20):26545–26561. CrossRefGoogle Scholar
  17. 17.
    Ghani ASA, Isa NAM (2015) Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl Soft Comput 27:219–230CrossRefGoogle Scholar
  18. 18.
    Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58(8):2867–2879CrossRefGoogle Scholar
  19. 19.
    He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1956–1963). doi:10.1109/CVPR.2009.5206515Google Scholar
  20. 20.
    Henke B, Vahl M, Zhou Z (2013) Removing color cast of underwater images through non-constant color constancy hypothesis. In 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (pp. 20–24)Google Scholar
  21. 21.
    Hitam MS, Awalludin EA, Yussof WNJHW, Bachok Z (2013) Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In Computer Applications Technology (ICCAT), 2013 International Conference on (pp. 1–5)Google Scholar
  22. 22.
    Hope N (n.d.) Underwater Videos and PicturesGoogle Scholar
  23. 23.
    Hung H-C, Chen C-L (2012) A fuzzy inference model for removing the color cast of digitally captured images under unknown illuminants. In 2012 International conference on Fuzzy Theory and Its Applications (iFUZZY2012) (pp. 192–197)Google Scholar
  24. 24.
    Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010a) Enhancing the low quality images using unsupervised colour correction method. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1703–1709. doi:10.1109/ICSMC.2010.5642311Google Scholar
  25. 25.
    Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010b) Enhancing the low quality images using Unsupervised Colour Correction Method. In Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on (pp. 1703–1709)Google Scholar
  26. 26.
    Iqbal K, Salam RA, Osman A, Talib AZ (2007) Underwater Image Enhancement Using an Integrated Colour Model. Int J Comput Sci 34(2):239–244. CrossRefGoogle Scholar
  27. 27.
    James K, Russell E (1995) Particle swarm optimization. In Proceedings of 1995 IEEE International Conference on Neural Networks (pp. 1942–1948).Google Scholar
  28. 28.
    Jolla L (2015) Single underwater image enhancement using depth estimation based on blurriness Yan-Tsung Peng , Xiangyun Zhao and Pamela C. Cosman Department of Electrical and Computer Engineering , University of California , San Diego ,. International Conference on Image Processing (ICIP), 2–6.Google Scholar
  29. 29.
    Kanmani M, Narasimhan V (2017) Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images. Multimed Tools Appl. CrossRefGoogle Scholar
  30. 30.
    Knowles J, Corne D (1999) The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 1, pp. 98–105).Google Scholar
  31. 31.
    Kwok NM, Shi HY, Ha QP, Fang G, Chen SY, Jia X (2013) Simultaneous image color correction and enhancement using particle swarm optimization. Eng Appl Artif Intell 26(10):2356–2371CrossRefGoogle Scholar
  32. 32.
    Lam EY (2005) Combining gray world and retinex theory for automatic white balance in digital photography. In Proceedings of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005). (pp. 134–139). doi:10.1109/ISCE.2005.1502356Google Scholar
  33. 33.
    Lebart K, Smith C, Trucco E, Lane DM (2003) Automatic indexing of underwater survey video: algorithm and benchmarking method. IEEE J Ocean Eng 28(4):673–686CrossRefGoogle Scholar
  34. 34.
    Li C, Guo J, Wang B, Cong R, Zhang Y, Wang J (2016) Single underwater image enhancement based on color cast removal and visibility restoration. Journal of Electronic Imaging 25(3):033012. CrossRefGoogle Scholar
  35. 35.
    Liu Y, Liang Y, Liu S, Rosenblum DS, Zheng Y (2016) Predicting urban water quality with ubiquitous data. ArXiv Preprint ArXiv:1610.09462Google Scholar
  36. 36.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: Recognizing Complex Activities from Sensor Data. In IJCAIGoogle Scholar
  37. 37.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115. CrossRefGoogle Scholar
  38. 38.
    Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban Water Quality Prediction based on Multi-task Multi-view Learning (Proceeding). IJCAI 2016. Retrieved from
  39. 39.
    Lu H, Li Y, Zhang Y, Chen M, Serikawa S, Kim H (2017) Underwater optical image processing: a comprehensive review. Computer Vision and Pattern Recognition:1–14. CrossRefGoogle Scholar
  40. 40.
    Panetta K, Gao C, Agaian S (2016) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541–551CrossRefGoogle Scholar
  41. 41.
    Peng YT, Cosman PC (2017) Underwater Image Restoration Based on Image Blurriness and Light Absorption. IEEE Trans Image Process 26(4):1579–1594. MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308MathSciNetGoogle Scholar
  43. 43.
    Rizzi A, Gatta C, Marini D (2003) A new algorithm for unsupervised global and local color correction. Pattern Recogn Lett 24(11):1663–1677CrossRefGoogle Scholar
  44. 44.
    Schechner YY, Averbuch Y (2007) Regularized image recovery in scattering media. IEEE Trans Pattern Anal Mach Intell 29(9):1655–1660CrossRefGoogle Scholar
  45. 45.
    Sethi R, Sreedevi I, Verma OP, Jain V (2015) An optimal underwater image enhancement based on fuzzy gray world algorithm and Bacterial Foraging algorithm. In 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG) (pp. 1–4)Google Scholar
  46. 46.
    Singh H (n.d.) \uppercase{WHOI} Color Correction Dataset.Google Scholar
  47. 47.
    Singh K, Kapoor R, Sinha SK (2015) Enhancement of low exposure images via recursive histogram equalization algorithms. Optik 126(20):2619–2625. CrossRefGoogle Scholar
  48. 48.
    Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248CrossRefGoogle Scholar
  49. 49.
    Torres-Méndez LA, Dudek G (2005) Color correction of underwater images for aquatic robot inspection. In International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 60–73)Google Scholar
  50. 50.
    Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325. MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Tripathi AK, Mukhopadhyay S, Dhara AK (2011) Performance metrics for image contrast. In Image Information Processing (ICIIP), 2011 International Conference on (pp. 1–4)Google Scholar
  52. 52.
    Verma OP, Kumar P, Hanmandlu M, Chhabra S (2012) High dynamic range optimal fuzzy color image enhancement using artificial ant colony system. Appl Soft Comput 12(1):394–404CrossRefGoogle Scholar
  53. 53.
    Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. Proceedings - 2011 2nd International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2011, 17–20. doi:10.1109/IBICA.2011.9Google Scholar
  54. 54.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  55. 55.
    Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization. In Graphics Gems. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information TechnologyDelhi Technological UniversityDelhiIndia
  2. 2.Department of Electronics and Communication EngineeringDelhi Technological UniversityDelhiIndia

Personalised recommendations