Multimedia Tools and Applications

, Volume 78, Issue 22, pp 31077–31100 | Cite as

Reduced Optimal Feature Based Biometric Authentication Using MALO-MKSVM Techniques

  • L. Nisha EvangelinEmail author
  • A. Lenin Fred


Biometric authentication is referred to as a realistic authentication which traits used is distinct, and quantifiable to recognize one individual. Depending on the level of security required, unimodal based authentication mechanisms are prone to numerous security attacks. In this paper, we propose a multimodal based biometric recognition framework which will improve the security level by using more than one type of biometric scanner. A new multimodal feature extraction technique has been proposed to reduce the features by utilizing Probabilistic Principal Component Analysis (PPCA) model by the way of choosing optimal features with the assistance of Modified Ant Lion Optimization (MALO). Finally, the recognized and non-recognized images are accomplished by the formation of a new classification model i.e. Multi Kernel Support Vector Machine (MKSVM). From this procedure, the result showed that a high recognition rate and also the most extreme accuracy accomplished in this work.


Biometric authentication Multimodal Feature extraction Classification MALO 



  1. 1.
    Bansal M, Hanmandlu M, Kumar P (2016) IRIS based authentication using local principal independent components. Optik-Int J for Light & Electron Optic 127(11):4808–4814CrossRefGoogle Scholar
  2. 2.
    Brocardo ML, Traore I, Woungang I (2015) Authorship verification of e-mail and tweet messages applied for continuous authentication. J Comput Syst Sci 81(8):1429–1440MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chaurasia P, Yogarajah P, Condell J, Prasad G, McIlhatton D, Monaghan R (2015) Biometrics and counter-terrorism: the case of gait recognition. Behavioral Sci of Terr & Politi Aggr 7(3):210–226Google Scholar
  4. 4.
    Dixon P (2008) Ethical issues implicit in library authentication and access management: Risks and best practices. J Libr Adm 47(3-4):141–162CrossRefGoogle Scholar
  5. 5.
    D'Urso P, Giordani P (2005) Apossibilistic approach to latent component analysis for symmetric fuzzy data. Fuzzy Sets Syst 150(2):285–305CrossRefGoogle Scholar
  6. 6.
    Eskandari M, Toygar Ö (2015) Selection of optimized features and weights on face-iris fusion using distance images. Comput Vis Image Underst 137:63–75CrossRefGoogle Scholar
  7. 7.
    Evangelin LN, Fred AL (2017) Biometric authentication of physical characteristics recognition using the artificial neural network with PSO algorithm. Int J Comput Appl Technol 56(3):219–229CrossRefGoogle Scholar
  8. 8.
    Feng L, Po LM, Li Y, Xu X, Yuan F, Cheung TCH, Cheung KW (2016) Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J Vis Commun Image Represent 38:451–460CrossRefGoogle Scholar
  9. 9.
    Fridman L, Stolerman A, Acharya S, Brennan P, Juola P, Greenstadt R, Kam M Multi-modal decision fusion for continuous authentication. J Comput Electr Eng 41:142–156CrossRefGoogle Scholar
  10. 10.
    Kang JH, Jo YC, Kim SP (2018) Electroencephalographic feature evaluation for improving personal authentication performance. Neurocomputing 287:93–101CrossRefGoogle Scholar
  11. 11.
    Khellat-Kihel S, Abrishambaf R, Monteiro JL, Benyettou M (2016) Multimodal fusion of the finger vein, fingerprint and the finger-knuckle-print using Kernel Fisher analysis. Appl Soft Comput 42:439–447CrossRefGoogle Scholar
  12. 12.
    Khodadoust J, Khodadoust AM (2017) Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recogn 67:110–126CrossRefGoogle Scholar
  13. 13.
    Lastra M, Carabaño J, Gutiérrez PD, Benítez JM, Herrera F (2016) Fast fingerprint identification using GPUs. J Inf Sci 301:195–214CrossRefGoogle Scholar
  14. 14.
    Ma B, Wang Y, Li C, Zhang Z, Huang D (2013) Secure multimodal biometric authentication with wavelet quantization based fingerprint watermarking. J Multimed Tools Appl 72(1):637–666CrossRefGoogle Scholar
  15. 15.
    Malarvizhi N, Selvarani P, Raj P (2019) Adaptive fuzzy genetic algorithm for multi biometric authentication. Multimedia Tools and Applications, 1-14Google Scholar
  16. 16.
    Malegori C, Franzetti L, Guidetti R, Casiraghi E, Rossi R (2016) GLCM, an image analysis technique for early detection of biofilm. J Food Eng 185:48–55CrossRefGoogle Scholar
  17. 17.
    Malek O, Venetsanopoulos A, Androutsos D, Zhao L (2015) Sequential subspace estimator for biometric authentication. J Neurocomput 148:294–309CrossRefGoogle Scholar
  18. 18.
    Mohanty AK, Beberta S, Lenka SK (2011) Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram. Int J Eng Res Appl 1(3):687–693Google Scholar
  19. 19.
    Mondal S, Bours P (2015) A computational approach to the continuous authentication biometric system. J Inf Sci 30:28–53CrossRefGoogle Scholar
  20. 20.
    Moos S, Marcolin F, Tornincasa S, Vezzetti E, Violante MG, Fracastoro G, Speranza D, Padula F (2012) Cleft lip pathology diagnosis and foetal landmark extraction via 3D geometrical analysis. Int J Interact Des Manuf 11(1):1–18CrossRefGoogle Scholar
  21. 21.
    Morales A, Ferrer MA, Cappelli R, Maltoni D, Fierrez J, Ortega-Garcia J (2015) Synthesis of large scale hand-shape databases for biometric applications. J Pattern Recogn Lett 68:183–189CrossRefGoogle Scholar
  22. 22.
    Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez RM (2015) A robust embedded biometric authentication system based on fingerprint and chaotic encryption. J Expert Syst Appl 42(21):8198–8211CrossRefGoogle Scholar
  23. 23.
    Neha CK (2018) Biometric re-authentication: an approach towards achieving transparency in user authentication Journal of Multimedia Tools and Applications, pp.1-22.Google Scholar
  24. 24.
    Nigam A, Gupta P (2015) Designing an accurate hand biometric-based authentication system fusing finger knuckleprint and palmprint. Neurocomputing. 151:1120–1132CrossRefGoogle Scholar
  25. 25.
    Om H, Reddy MR (2015) Geometric based remote password authentication using biometrics. J Discret Math Sci Cryptogr 16(4-5):207–220MathSciNetCrossRefGoogle Scholar
  26. 26.
    Peralta D, Galar M, Triguero I, Paternain D, García S, Barrenechea E, Benítez JM, Bustince H, Herrera F (2015) A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation. J Inf Sci 315:67–87MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ramu T, Suthendran K, Arivoli T Machine learning based soft biometrics for enhanced keystroke recognition system. Multimedia Tools and Applications, 1-17Google Scholar
  28. 28.
    Regouid M, Touahria M, Benouis M, Costen N (2019) Multimodal biometric system for ECG, ear and iris recognition based on local descriptors. Multimedia Tools and Applications, 1-27Google Scholar
  29. 29.
    Sahoo SK, Choubisa T, Prasanna SM (2012) Multimodal biometric person authentication: A review. IETE Tech Rev 29(1):54–75CrossRefGoogle Scholar
  30. 30.
    Subhashini KR, Satapathy JK (2017) Development of an Enhanced Ant Lion Optimization Algorithm and its Application in Antenna Array Synthesis. Appl Soft Comput 59:153–173CrossRefGoogle Scholar
  31. 31.
    Tarif EB, Wibowo S, Wasimi S, Tareef A (2017) A hybrid encryption/hiding method for secure transmission of biometric data in multimodal authentication system. J Multimed Tools Appl 77(2):2485–2503CrossRefGoogle Scholar
  32. 32.
    Tiong LCO, Kim ST, Ro YM (2019) Implementation of multimodal biometric recognition via multi-feature deep learning networks and feature fusion. Multimedia Tools and Applications, pp.1-30Google Scholar
  33. 33.
    Vezzetti E, Marcolin F (2012) Geometrical descriptors for human face morphological analysis and recognition. J Robot Auton Syst 60(6):928–939CrossRefGoogle Scholar
  34. 34.
    Wan M, Li M, Yang G, Gai S, Jin Z (2012) Feature extraction using two-dimensional maximum embedding difference. J Inf Sci 274:55–69CrossRefGoogle Scholar
  35. 35.
    Wan M, Yang G, Gai S, Yang Z (2015) Two-dimensional discriminant locality preserving projections (2DDLPP) and its application to feature extraction via fuzzy set. J Multimed Tools Appl 76(1):355–371CrossRefGoogle Scholar
  36. 36.
    Wan M, Li M, Yang G, Yang Z, Zhang F, Zheng H (2017) Local graph embedding based on maximum margin criterion via fuzzy set. J Fuzzy Sets Syst 318:120–131MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang Y, Pan Z (2017) Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization. Infrared Phys Technol 86:59–65CrossRefGoogle Scholar
  38. 38.
    Wang JS, Liu CH, Shyu JZ (2013) Biometrics technology evaluating and selecting model building. Tech Anal Strat Manag 25(9):1067–1083CrossRefGoogle Scholar
  39. 39.
    Wild P, Radu P, Chen L, Ferryman J (2016) Robust multimodal face and fingerprint fusion in the presence of spoofing attacks. Pattern Recogn 50:17–25CrossRefGoogle Scholar
  40. 40.
    Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y (2009) November. Multi-kernel SVM based classification for brain tumor segmentation of MRI multi-sequence. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 3373-3376). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Science and EngineeringSathyabama UniversityChennaiIndia
  2. 2.Mar Ephraem College of Engineering and TechnologyMarthandamIndia

Personalised recommendations