Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 22, pp 31057–31075 | Cite as

Optimal clustering based outlier detection and cluster center initialization algorithm for effective tone mapping

  • N. NeelimaEmail author
  • Yada Ravi Kumar
Article
  • 66 Downloads

Abstract

The high dynamic range (HDR) imaging and displaying a wide range of imaging levels in the imaging industry is found in the world using devices with limited dynamic range. Generally, the clustering system plays an important role in tone mapping. Clustering is a combination of similar properties based on their properties. Maximum detection and cluster core initiation is a major problem in the cluster; has been used to remove and identify abnormal data from the database. The data value can be represented by the value data outside the boundary of the sample data. In this paper, we have suggested clustering-based release detection and cluster core initialization protocols for open tone mapping, which uses the modified K-object clustering algorithm in the cluster the data sets. A density-based multi-level data suppression (DBMSDC) algorithm is used the early cluster centers calculated using the DBMSDC algorithm have been found to be very close to the desired cluster centers. Exposure has been detected using a weight based center approach and the change K-material clustering has been removed. Test results show that the proposed methods reach advanced and efficient solutions, while the art tone mapping protocols.

Keywords

Clustering Outlier K-means Density based multi scale data condensation Weight based center approach 

Notes

References

  1. 1.
    Amundadottir M, Rockcastle S, Sarey Khanie M, Andersen M (2017) A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior. Build Environ 113:5–21.  https://doi.org/10.1016/j.buildenv.2016.09.033 CrossRefGoogle Scholar
  2. 2.
    Benzi M, Escobar M, Kornprobst P (2018) A bio-inspired synergistic virtual retina model for tone mapping. Comput Vis Image Underst 168:21–36.  https://doi.org/10.1016/j.cviu.2017.11.013 CrossRefGoogle Scholar
  3. 3.
    Borji A, Sihite D, Itti L (2013) Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Process 22:55–69.  https://doi.org/10.1109/tip.2012.2210727 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eilertsen G, Mantiuk R, Unger J (2017) A comparative review of tone-mapping algorithms for high dynamic range video. Computer Graphics Forum 36:565–592.  https://doi.org/10.1111/cgf.13148 CrossRefGoogle Scholar
  5. 5.
    Fang H, Zhang Y, Yi B, Xie Q (2015) Tone mapping based on fast image decomposition and multi-layer fusion. IET Comput Vis 9:937–942CrossRefGoogle Scholar
  6. 6.
    Gao X, Brooks S, Arnold D (2015) Automated parameter tuning for tone mapping using visual saliency. Comput Graph 52:171–180.  https://doi.org/10.1016/j.cag.2015.05.028 CrossRefGoogle Scholar
  7. 7.
    Gu K, Jakhetiya V, Qiao J et al (2018) Model-based reference less quality metric of 3D synthesized images using local image description. IEEE Trans Image Process 27:394–405.  https://doi.org/10.1109/tip.2017.2733164 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hadizadeh H, Bajic I (2018) Full-reference objective quality assessment of tone-mapped images. IEEE Transactions on Multimedia 20:392–404.  https://doi.org/10.1109/tmm.2017.2740023 CrossRefGoogle Scholar
  9. 9.
    Hsiao P-Y, Chieh-Lun L, Li-Chen F (2010) Multilayered image processing for multiscale Harris corner detection in digital realization. IEEE Trans Ind Electron 57:1799–1805.  https://doi.org/10.1109/tie.2010.2040556 CrossRefGoogle Scholar
  10. 10.
    Huh JH (2018) Big data analysis for personalized health activities: machine learning processing for automatic keyword extraction approach. Symmetry 10(4):93.  https://doi.org/10.3390/sym10040093 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huo Y, Yang F (2016) High-dynamic range image generation from single low-dynamic range image. IET Image Process 10:198–205.  https://doi.org/10.1049/iet-ipr.2014.0782 CrossRefGoogle Scholar
  12. 12.
    Jain A (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31:651–666.  https://doi.org/10.1016/j.patrec.2009.09.011 CrossRefGoogle Scholar
  13. 13.
    Jiang Q, Shao F, Lin W, Jiang G (2017) BLIQUE-TMI: blind quality evaluator for tone-mapped images based on local and global feature analyses. IEEE Transactions on Circuits and Systems for Video Technology:1–1.  https://doi.org/10.1109/tcsvt.2017.2783938 CrossRefGoogle Scholar
  14. 14.
    Khan SS, Ahmad A (2004) Cluster center initialization algorithm for K-means clustering. Pattern Recogn Lett 25(11):1293–1302.  https://doi.org/10.1016/j.patrec.2004.04.007 CrossRefGoogle Scholar
  15. 15.
    Khan SS, Ahmad A (2013) Cluster center initialization algorithm for K-modes clustering. Expert Syst Appl 40(18):7444–7456.  https://doi.org/10.1016/j.eswa.2013.07.002 CrossRefGoogle Scholar
  16. 16.
    Khan I, Rahardja S, Khan M et al (2018) A tone-mapping technique based on histogram using a sensitivity model of the human visual system. IEEE Trans Ind Electron 65:3469–3479.  https://doi.org/10.1109/tie.2017.2760247 CrossRefGoogle Scholar
  17. 17.
    Lee S, Huh JH (2018) An effective security measures for nuclear power plant using big data analysis approach. J Supercomput:1–28.  https://doi.org/10.1007/s11227-018-2440-4 CrossRefGoogle Scholar
  18. 18.
    Li CS (2011) Cluster center initialization method for k-means algorithm over data sets with two clusters. Procedia Engineering 24:324–328.  https://doi.org/10.1016/j.proeng.2011.11.2650 CrossRefGoogle Scholar
  19. 19.
    Li J, Tian Y, Huang T, Gao W (2010) Probabilistic multi-task learning for visual saliency estimation in video. Int J Comput Vis 90:150–165.  https://doi.org/10.1007/s11263-010-0354-6 CrossRefGoogle Scholar
  20. 20.
    Li H, Jia X, Zhang L (2018) Clustering based content and color adaptive tone mapping. Comput Vis Image Underst 168:37–49.  https://doi.org/10.1016/j.cviu.2017.11.001 CrossRefGoogle Scholar
  21. 21.
    Malm H, Oskarsson M, Warrant E et al (2007) Adaptive enhancement and noise reduction in very low light-level video. In: 2007 IEEE 11th international conference on computer vision, Rio de Janeiro, Brazil, pp 1–8.  https://doi.org/10.1109/iccv.2007.4409007
  22. 22.
    Mantiuk R, Daly S, Kerofsky L (2008) Display adaptive tone mapping. ACM Trans Graph 27:1.  https://doi.org/10.1145/1360612.1360667 CrossRefGoogle Scholar
  23. 23.
    Marsi S, Impoco G, Ukovich A et al (2007) Video enhancement and dynamic range control of HDR sequences for automotive applications. EURASIP Journal on Advances in Signal Processing 1:080971.  https://doi.org/10.1155/2007/80971 CrossRefzbMATHGoogle Scholar
  24. 24.
    Maulik U, Bandyopadhyay S (2012) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654.  https://doi.org/10.1109/TPAMI.2002.1114856 CrossRefGoogle Scholar
  25. 25.
    Ok J, Lee C (2017) HDR tone mapping algorithm based on difference compression with adaptive reference values. J Vis Commun Image Represent 43:61–76.  https://doi.org/10.1016/j.jvcir.2016.12.008 CrossRefGoogle Scholar
  26. 26.
    Oskarsson M (2017) Temporally consistent tone mapping of images and video using optimal k-means clustering. Journal of mathematical imaging and vision 57(2):225–238MathSciNetCrossRefGoogle Scholar
  27. 27.
    Patel VA, Shah P, Raman S (2018) A generative adversarial network for tone mapping HDR images. In: Computer vision, pattern recognition, image processing, and graphics: 6th National Conference, NCVPRIPG 2017, Mandi, India, pp 220–223Google Scholar
  28. 28.
    Scheunders P (1997) A comparison of clustering algorithms applied to color image quantization. Pattern Recogn Lett 18:1379–1384.  https://doi.org/10.1016/s0167-8655(97)00116-5 CrossRefGoogle Scholar
  29. 29.
    Shan Q, Jia J, Brown M (2010) Globally optimized linear windowed tone mapping. IEEE Trans Vis Comput Graph 16:663–675.  https://doi.org/10.1109/tvcg.2009.92 CrossRefGoogle Scholar
  30. 30.
    Shibata T, Tanaka M, Okutomi M (2016) Gradient-domain image reconstruction framework with intensity-range and base-structure constraints. Proc IEEE Conf Comput Vis Pattern Recognit:2745–2753Google Scholar
  31. 31.
    Shin S, Kong K, Lee J et al (2017) Tone mapping to minimize visual sensation distortion considering brightness and local band-limited contrast. J Soc Inf Disp 25:621–635.  https://doi.org/10.1002/jsid.612 CrossRefGoogle Scholar
  32. 32.
    Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen HT (2018) From deterministic to generative: multimodal stochastic RNNs for video captioning. IEEE transactions on neural networks and learning systems 16(99):1–2.  https://doi.org/10.1109/TNNLS.2018.2851077 CrossRefGoogle Scholar
  33. 33.
    Song J, Zhang H, Li X, Gao L, Wang M, Hong R (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 27(7):3210–3221.  https://doi.org/10.1109/TIP.2018.2814344 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang L, Horiuchi T, Kotera H, Tominaga S (2007) HDR image compression and evaluation based on local adaptation using a retinal model. J Soc Inf Disp 15:731.  https://doi.org/10.1889/1.2785206 CrossRefGoogle Scholar
  35. 35.
    Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Transactions on Multimedia 20(3):634–644.  https://doi.org/10.1109/TMM.2017.2749159 CrossRefGoogle Scholar
  36. 36.
    Warrant E, Oskarsson M, Malm H (2014) The remarkable visual abilities of nocturnal insects: neural principles and bioinspired night-vision algorithms. Proc IEEE 102:1411–1426.  https://doi.org/10.1109/jproc.2014.2332533 CrossRefGoogle Scholar
  37. 37.
    Zhang E, Yang H, Xu M (2015) A novel tone mapping method for high dynamic range image by incorporating edge-preserving filter into method based on Retinex. Applied Mathematics & Information Sciences 9:411–417.  https://doi.org/10.12785/amis/010148 CrossRefGoogle Scholar
  38. 38.
    Ziaei Nafchi H, Shahkolaei A, Farrahi Moghaddam R, Cheriet M (2015) FSITM: a feature similarity index for tone-mapped images. IEEE Signal Processing Letters 22:1026–1029.  https://doi.org/10.1109/lsp.2014.2381458 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronics & Communication EngineeringCMR Institute of TechnologyHyderabadIndia
  2. 2.SINT (E) DivisionDLRLHyderabadIndia

Personalised recommendations