Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 23, pp 33261–33277 | Cite as

Sparse learning based on clustering by fast search and find of density peaks

  • Pengqing Li
  • Xuelian DengEmail author
  • Leyuan Zhang
  • Jiangzhang Gan
  • Jiaye Li
  • Yonggang Li
Article
  • 77 Downloads

Abstract

Clustering by fast search and find of density peaks (CFSFDP) is a novel clustering algorithm proposed in recent years. The algorithm has the advantages of low computational complexity and high accuracy. However, the truncation distance dc needs to be determined according to user experience. Aiming to overcome these drawbacks, this paper proposes a new algorithm named Sparse learning based on clustering by fast search and find of density peaks (SL-CFSFDP). Compared to CFSFDP, the proposed algorithm can obtain dc automatically, and it uses sparse learning to determine the neighbors of each data point, removing irrelevant data points at the same time. SL-CFSFDP combines the local density and the distance δi to automatically determine cluster centers, after which the remaining data points are assigned to clusters according to the local density and distance δi. Extensive experimental results on both synthetic and benchmark datasets show that SL-CFSFDP is superior to DBSCAN and CFSFDP.

Keywords

Truncation distance Sparse learning Local density Density peaks Clustering algorithm 

Notes

Acknowledgments

This work is partially supported by the China Key Research Program (Grant No: 2016YFB1000905); the Key Program of the National Natural Science Foundation of China (Grant No: 61836016); the Natural Science Foundation of China (Grants No: 61876046, 61573270, 81701780 and 61672177); the Project of Guangxi Science and Technology (GuiKeAD17195062); the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011, 2017GXNSFBA198221); the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; the Guangxi High Institutions Program of Introducing 100 High-Level Overseas Talents; the Project of Guangxi Science and Technology (GuiKeAD17195062) the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; the Research Fund of Guangxi Key Lab of Multisource Information Mining & Security (18-A-01-01); the National Natural Science Foundation of Guangxi (No. 2016GXNSFAA380098) and Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS18-09).

References

  1. 1.
    Bandyopadhyay S, Coyle EJ (2003) An energy efficient hierarchical clustering algorithm for wireless sensor networks. Joint Conf IEEE Comput Commun IEEE Societies 3:1713–1723Google Scholar
  2. 2.
    Bin Y, Yang Y, Shen F, Xie N, Shen HT, Li X (2018) Describing video with attention based bidirectional lstm. IEEE Trans CyberneticsGoogle Scholar
  3. 3.
    Charikar M, Chatziafratis V (2017) Approximate hierarchical clustering via sparsest cut and spreading metrics. Twenty-eighth Acm-siam Symposium on Discrete Algorithms : 841–854Google Scholar
  4. 4.
    Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. Acm Sigact Symposium : 118–127Google Scholar
  5. 5.
    Duan L, Yu F, Zhan L (2016) An improved fuzzy c-means clustering algorithm. Int Conf Natural Comput 9(1):44–46Google Scholar
  6. 6.
    Elhamifar E, Vidal R (2009) Sparse subspace clustering. IEEE Conf Comput Vis Pattern Recognit 35(11):2790–2797Google Scholar
  7. 7.
    Ester M, Kriegel HP, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. IEEE Trans Knowl Data Eng : 226–131Google Scholar
  8. 8.
    Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video captioning with attention-based LSTM and semantic consistency. IEEE Trans Multimedia 19 (9):2045–2055CrossRefGoogle Scholar
  9. 9.
    Hartigan JA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108CrossRefGoogle Scholar
  10. 10.
    Hu H, Lin Z, Feng J (2014) Smooth representation clustering. IEEE :3834–3841Google Scholar
  11. 11.
    Hu Rongyao, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137CrossRefGoogle Scholar
  12. 12.
    Khan SS, Ahmad A (2013) Cluster center initialization algorithm for k-modes clustering. Expert Syst Appl 40(18):7444–7456CrossRefGoogle Scholar
  13. 13.
    Lei C, Zhu X (2018) Unsupervised feature selection via local structure learning and sparse learning. Multimed Tools Appl 77(22):29605–29622CrossRefGoogle Scholar
  14. 14.
    Li CG, You C, clustering VR (2017) Structured sparse subspace a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26 (6):2988–3001MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu G, Lin Z, Yan S, Sun J, Yu Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRefGoogle Scholar
  16. 16.
    Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS (2012) Robust and efficient subspace segmentation via least squares regression. European Conf Comput Vis 7578 (1):347–360Google Scholar
  17. 17.
    Lv Y, Ma T, Tang M, Cao J, Tian Y (2016) An efficient and scalable density-based clustering algorithm for datasets with complex structures. Neurocomputing 171(C):9–22CrossRefGoogle Scholar
  18. 18.
    Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl 36(2):3336–3341CrossRefGoogle Scholar
  19. 19.
    Rodriguez A, Laio A (2014) A clustering by fast search and find of density peaks. Science 344(6191):1492CrossRefGoogle Scholar
  20. 20.
    Sander J (2011) Density-based clustering. Springer, US, pp 270–273Google Scholar
  21. 21.
    Shen YC, Zhang H (2017) Automatically selecting cluster centers in clustering by fast search and find of density peaks with data field. In: International conference on information systems engineering, pp 32–36Google Scholar
  22. 22.
    Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen HT (2018) From deterministic to generative: multimodal stochastic rnns for video captioning. IEEE Trans Neural Netw Learning SystemsGoogle Scholar
  23. 23.
    Srinivasarao P, Suresh K, Ravi Kiran B (2015) Image segmentation using clustering algorithms. Int J Comput Appl 120:36–38Google Scholar
  24. 24.
    Tan J, Wang WX, Feng MS, Zuo XX (2012) A new approach based on ncut clustering algorithm for signature segmentation. Aasri Procedia 1(3):14–20CrossRefGoogle Scholar
  25. 25.
    Topchy AP, Law MHC, Jain AK, Fred AL (2004) Analysis of consensus partition in cluster ensemble. IEEE Int Conf Data Mining :225–232Google Scholar
  26. 26.
    Tran TN, Drab K, Daszykowski M (2013) Revised dbscan algorithm to cluster data with dense adjacent clusters. Chemometr Intell Lab Syst 120(2):92–96CrossRefGoogle Scholar
  27. 27.
    Wang S, Siskind JM (2003) Image segmentation with ratio cut. Pattern Analysis and Machine Intelligence IEEE Transactions on 25(6):675–690CrossRefGoogle Scholar
  28. 28.
    Wang M, Zuo W, Wang Y (2016) An improved density peaks-based clustering method for social circle discovery in social networks. Neurocomputing 179:219–227CrossRefGoogle Scholar
  29. 29.
    Wang S, Wang D, Li C, Li Y, Ding G (2016) Clustering by fast search and find of density peaks with data field. Chin J Electron 25(3):397–402CrossRefGoogle Scholar
  30. 30.
    Xia C (2017) An improved k-means clustering algorithm. China Comput CommunGoogle Scholar
  31. 31.
    Xu J, Wang G, Deng W (2016) Denpehc density peak based efficient hierarchical clustering. Inf Sci 373(12):200–218CrossRefGoogle Scholar
  32. 32.
    Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang Y, Zhou J, Ai J, Bin Y, Hanjalic A, Shen HT (2018) Video captioning by adversarial lstm. IEEE Trans Image ProcessGoogle Scholar
  34. 34.
    Zhang JM, Shen YX (2015) Review on spectral methods for clustering. Control Conf :3791–3796Google Scholar
  35. 35.
    Zhang S, Li X, Zong M, Zhu X, Wang R (2018) Efficient knn classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learning Syst 29(5):1774–1785MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhao Y, Zhang S (2006) Generalized dimension-reduction framework for recent-biased time series analysis. IEEE Trans Knowl Data Eng 18(2):231–244CrossRefGoogle Scholar
  37. 37.
    Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J (2018) Unsupervised feature selection by self-paced learning regularization. Pattern Recogn Lett.  https://doi.org/10.1016/j.patrec.2018.06.029
  38. 38.
    Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2018) Dynamic graph learning for spectral feature selection. Multimed Tools Appl 77(22):29739–29755CrossRefGoogle Scholar
  39. 39.
    Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z (2011) Missing value estimation for mixed-attribute datasets. IEEE Trans Knowl Data Eng 23(1):110–121CrossRefGoogle Scholar
  40. 40.
    Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybernetics 46(2):450–461CrossRefGoogle Scholar
  41. 41.
    Zhu X, Li X, Zhang S, Xu Z, Yu L, Wang C (2017) Graph pca hashing for similarity search. IEEE Trans Multimedia 19(9):2033–2044CrossRefGoogle Scholar
  42. 42.
    Zhu X, Suk H-Il, Huang H, Shen D (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans Big Data 3(4):405–414CrossRefGoogle Scholar
  43. 43.
    Zhu X, Zhang S, He W, Hu R, Lei C, Zhu P (2018) One-step multi-view spectral clustering. IEEE Trans Knowl Data EngGoogle Scholar
  44. 44.
    Zhu X, Zhang S, Hu R, Zhu Y et al (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529CrossRefGoogle Scholar
  45. 45.
    Zhu X, Zhang S, Li Y, Zhang J, Yang L, Fang Y (2019) Low-rank sparse subspace for spectral clustering. IEEE Trans Knowl Data Eng 31(8):1532–1543, 1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pengqing Li
    • 1
  • Xuelian Deng
    • 1
    • 2
    Email author
  • Leyuan Zhang
    • 1
  • Jiangzhang Gan
    • 1
  • Jiaye Li
    • 1
  • Yonggang Li
    • 1
  1. 1.Guangxi Key Lab of Multi-source Information Mining and SecurityGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.College of Public Health and ManagementGuangxi University of Chinese MedicineNanningChina

Personalised recommendations