Advertisement

Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud

  • Pau ArceEmail author
  • Ismael de Fez
  • Román Belda
  • Juan Carlos Guerri
  • Salvador Ferrairó
Article
  • 17 Downloads

Abstract

This paper presents and evaluates a system that provides TV and radio services in mobility using 4G communications. The system has mainly two blocks, one on the cloud and another on the mobile vehicle. On the cloud, a DVB (Digital Video Broadcasting) receiver obtains the TV/radio signal and prepares the contents to be sent through 4G. Specifically, contents are transcoded and packetized using the DASH (Dynamic Adaptive Streaming over HTTP) standard. Vehicles in mobility use their 4G connectivity to receive the flows transmitted by the cloud. The key element of the system is an on-board proxy that manages the received flows and offers them to the final users in the vehicle. The proxy contains a buffer that helps reduce the number of interruptions caused by hand over effects and lack of coverage. The paper presents a comparison between a live transmission using 4G connecting the clients directly with the cloud server and a near real-time transmission based on an on-board proxy. Results prove that the use of the proxy reduces the number of interruptions considerably and, thus, improves the Quality of Experience of users at the expense of slightly increasing the delay.

Keywords

Proxy 4G Video streaming TV Buffering Dynamic adaptive streaming over HTTP (DASH) Quality of experience ITU-T P.1203 

Notes

Acknowledgements

This work is supported by the Centro para el Desarrollo Tecnológico Industrial (CDTI) from the Government of Spain under the project “Plataforma avanzada de conectividad en movilidad” (CDTI IDI-20150126) and the project “Desarrollo de nueva plataforma de entretenimiento multimedia para entornos náuticos” (CDTI TIC-20170102).

References

  1. 1.
    3GPP (2012) Requirements for Further Advancements for E-UTRA (LTE-Advanced), Sophia-Antipolis Cedex, France, TR 36.913 V8.0.0, Release 11Google Scholar
  2. 2.
    3GPP (2013) Universal Mobile Telecommunications System (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (release 11), ETSI TS 126 346 v11.5.0Google Scholar
  3. 3.
    3GPP (2017) Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (release 8)Google Scholar
  4. 4.
    Acharya S, Alonso R, Franklin M, Zdonik S (1995), Broadcast disks: data management for asymmetric communication environments. Proc. of the ACM SIGMOD Conf. On Manag. Of data, San Jose, California, USA: 199-210.  https://doi.org/10.1145/223784.223816.
  5. 5.
    Bangerter B, Talwar S, Arefi R, Stewart K (2014) Networks and devices for the 5G era. IEEE Comm Mag 52(2):90–96.  https://doi.org/10.1109/MCOM.2014.6736748 CrossRefGoogle Scholar
  6. 6.
    Chakareski J (2014) Wireless streaming of interactive multi-view video via network compression and path diversity. IEEE Trans on Comm 62(4):1350–1357.  https://doi.org/10.1109/TCOMM.2014.022314.120890 CrossRefGoogle Scholar
  7. 7.
    Chuang MC, Chen MC (2015) A mobile proxy architecture for video services over high-speed rail environments in LTE-A networks. IEEE Syst J 9-4:1264–1272.  https://doi.org/10.1109/JSYST.2014.2354435 CrossRefGoogle Scholar
  8. 8.
    Cisco (2017) Cisco VNI Forecast and Methodology, 2016–2021. White paperGoogle Scholar
  9. 9.
    Digital Video Broadcasting (DVB) (2004) Transmission System for Handheld Terminals (DVB-H), ETSI EN 302 304 v1.1.1Google Scholar
  10. 10.
    Digital Video Broadcasting (DVB) (2009) System specifications for satellite services to handheld devices (SH) below 3 GHz, ETS ITS 102 585 v1.2.1Google Scholar
  11. 11.
    Erman J, Gerber A, Hajiaghayi M, Pei D, Sen S, Spatscheck O (2011) To cache or not to cache - the 3G case. IEEE Internet Comput 15(2):27–34.  https://doi.org/10.1109/MIC.2010.154 CrossRefGoogle Scholar
  12. 12.
    Evans BG (2014) The role of satellites in 5G. Proc. of the ASMS/SPSC, Livorno:197–202. 10.1109/ASMS-SPSC.2014.6934544Google Scholar
  13. 13.
    Ghadiyaram D, Pan J, Bovik AC (2019) A subjective and objective study of stalling events in mobile streaming videos. IEEE Trans. on Circuits and Syst. for Video Technol. 29(1):183–197.  https://doi.org/10.1109/TCSVT.2017.2768542 CrossRefGoogle Scholar
  14. 14.
    GSMA intelligence (2018) mapping worldwide 4G-LTE network launches. http://gsmaintelligence.com/analysis/2013/08/dashboard-mapping-worldwide-4g-lte-network-launches-august-2013/399. Accessed 21 March 2018
  15. 15.
    Hu H, Zhu X, Wang Y, Pan R, Zhu J, Bonomi F (2013) Proxy-based multi-stream scalable video adaptation over wireless networks using subjective quality and rate models. IEEE Trans on Multim 15(7):1638–1652.  https://doi.org/10.1109/TMM.2013.2266092 CrossRefGoogle Scholar
  16. 16.
    Informa Telecoms & Media (2018) LTE Spectrum Strategies and Forecasts to 2018, 3rd ed. http://www.informa.com/Media-centre/Press-releases—news/Latest-News/Informa-Telecoms-and-Media-Huawei-and-Ericsson-dominate-LTE-contracts-as-deployments-accelerate. Accessed 21 March 2018
  17. 17.
    International Telecommunication Union (2016) Mean opinion score (MOS) terminology. ITU-T P.800.1, series P: terminals and subjective and objective assessment methods, methods for objective and subjective assessment of speech and video qualityGoogle Scholar
  18. 18.
    International Telecommunication Union (ITU-T) (2017) Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport- recommendation ITU-TP.1203Google Scholar
  19. 19.
    ISO/IEC 23009-1 (2012) Dynamic adaptive streaming over HTTP (DASH) - part 1: media presentation descreiption and segment formatsGoogle Scholar
  20. 20.
    Kumar S, Sarkar A, Sur A (2017) A resource allocation framework for adaptive video streaming over LTE. J of Netw and Comp App 97:126–139.  https://doi.org/10.1016/j.jnca.2017.08.015 CrossRefGoogle Scholar
  21. 21.
    Lau CP, Alabbasi A, Shihada B (2016) An efficient live TV scheduling system for 4G LTE broadcast. IEEE Syst J 11(4):2737–2748.  https://doi.org/10.1109/JSYST.2015.2493180 CrossRefGoogle Scholar
  22. 22.
    Malandrino F, Chiasserini CF, Kirkpatrick S (2017) The impact of vehicular traffic demand on 5G caching architectures: a data-driven study. Veh Comm:13–20.  https://doi.org/10.1016/j.vehcom.2016.11.007
  23. 23.
    Ramanan BA, Drabeck LM, Haner M, Nithi N, Klein TE, Sawkar C (2013) Cacheability analysis of HTTP traffic in an operational LTE network. Wirel. Telecommun. Symp., Phoenix, AZ, United States. 10.1109/WTS.2013.6566245Google Scholar
  24. 24.
    Robitza W, Göring S, Raake A, Lindegren D, Heikkilä G, Gustafsson J, List P, Feiten B, Wüstenghage U, Garcia M N, Yamagishi K, Broom S (2018) HTTP adaptive streaming QoE estimation with ITU-T rec. P. 1203: open databases and software. Proc. of the ACM Multim. Syst. Conf. (MMSys) Amsterdam, Netherlands, 466–471Google Scholar
  25. 25.
    Samdanis K, Taleb T, Schmid S (2012) Traffic offload enhancements for eUTRAN. IEEE Commun Surv & Tutor 14(3):884–896.  https://doi.org/10.1109/SURV.2011.072711.00168 Google Scholar
  26. 26.
    Tabrizi FM, Peters J, Hefeeda M (2013) Dynamic control of receiver buffers in mobile video streaming systems. IEEE Trans on Mob Comput 12(5):995–1008.  https://doi.org/10.1109/TMC.2012.56 CrossRefGoogle Scholar
  27. 27.
    Taleb T, Hadjadj-Aoul Y, Schmid S (2011) Geographical location and load based gateway selection for optimal traffic offload in mobile networks. Proc. of the IFIP Networking, Valencia, Spain: 331–342. 10.1007/978.3.642.20757.0.26Google Scholar
  28. 28.
    Woo S, Jeong E, Park S, Lee J, Ihm S, Park K (2013) Comparison of caching strategies in modern cellular backhaul networks. Proc. of the ACM MobiSys, Taipei, Taiwan: 319–332. 10.1145/2462456.2464442Google Scholar
  29. 29.
    Yrjöla S, Huuhka E, Talmola P, Knuutila T (2017) Coexistence of digital terrestrial television and 4G LTE mobile network utilizing supplemental downlink concept: a real case study. IEEE Trans on Veh Technol 66(6):5422–5434.  https://doi.org/10.1109/TVT.2016.2628088 CrossRefGoogle Scholar
  30. 30.
    Zhao M, Gong X, Liang J, Wang W, Que X, Cheng S (2015) QoE-driven cross-layer optimization for wireless dynamic adaptive streaming of scalable videos over HTTP. IEEE Trans on Circuits and Syst for Video Technol 25(3):451–465.  https://doi.org/10.1109/TCSVT.2014.2357094 CrossRefGoogle Scholar
  31. 31.
    Zhiqi G, Songyu Y, Wenjun Z (2004) Using object multiplex technique in data broadcast on digital CATV channel. IEEE Trans on Broadcast 50(2):113–119.  https://doi.org/10.1109/TBC.2004.828365 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Telecommunications and Multimedia Applications (iTEAM)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.Azimut ElectronicsGandiaSpain

Personalised recommendations