Advertisement

Real time Demosaicking algorithm using derivative difference and curvature for digital camera

  • Jin WangEmail author
  • Jechang Jeong
Article
  • 33 Downloads

Abstract

Lots of mobile devices adopt single image sensors to acquire scene images. In our algorithm, we propose an adaptive and effective demosaicking algorithm using derivative difference and curvature which can estimate the directional component to reconstruct the to-be-interpolated color pixels. We introduce an function to evaluate the image complexity, which is composed by the derivative difference and isophote smoothing which is calculated as the sign of image curvature.

Keywords

Curvature Derivative difference Digital camera 

Notes

Acknowledgements

This work was supported by the ICT R&D program of MSIP/IITP [2014-0-00670, Software Platform for ICT Equipment].

References

  1. 1.
    Chang L, Tam Y-P (2004) Effective use of spatial and spectral correlations for color filter array demosaicing. IEEE Trans Consumer Electron 50(1):355–365CrossRefGoogle Scholar
  2. 2.
    Chen W-J, Chang P-Y (2012) Effective demosaicking algorithm based on edge property for color filter arrays. Digit Signal Process 22(1):163–169MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen W-J, Chang P-Y (2012) Effective demosaicking algorithm based on edge property for color filter arrays. Digital Image Processing 22(1):163–169MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chung K-H, Chan Y-H (2006) Color demosaicing using variance of color differences. IEEE Trans Image Process 15(10):2944–2955CrossRefGoogle Scholar
  5. 5.
    Dubois E (2005) Frequency-domain methods for demosaicking of bayer-sampled color images. IEEE Signal Process Lett 12(12):847–850CrossRefGoogle Scholar
  6. 6.
    Gunturk BK, Glotzbach J, Altunbask Y, Schafer RW, Mersereau RM (2005) Demosaicing: color filter array interpolation. IEEE Signal Process Mag 22(1):44–54CrossRefGoogle Scholar
  7. 7.
    Hamilton JF, Adams JE (1997) Adaptive color plane interpolation in single sensor color electronic camera. US Patent 5(629):734Google Scholar
  8. 8.
    Huang Y-H, Lin T-J (2018) Novel quality-efficient universal demosaicing for arbitrary color filter array images. Multimed Tools Appl 77(1):1475–1499CrossRefGoogle Scholar
  9. 9.
    Jeon G, Dubois E (2013) Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation. IEEE Trans Image Process 22(1):146–156MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kim J, Jeon G, Jeong J (2014) Demosaicking using geometric duality and dilated directional differentiation. Opt Commun 324:194–201CrossRefGoogle Scholar
  11. 11.
    Leung B, Jeon G, Dubois E (2011) Least-squares luma-chroma demultiplexing algorithm for bayer demosaicking. IEEE Trans Image Process 20(7):1885–1894MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li JSJ, Randhawa S (2009) Color filter array demosaicking using high-order interpolation techniques with a weighted median filter for sharp color edge preservation. IEEE Trans Image Process 18(9):1946–1957MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lian NX, Chang L, Tan YP, Zagorodnov V (2007) Adaptive filtering for color filter array demosaicking. IEEE Trans Image Process 16(10):2515–2525MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lukac R, Plataniotis KN, Hatzinakos D (2005) Color image zooming on the Bayer pattern. IEEE Trans Circ Syst Video Technol 15(11):1475–1492CrossRefGoogle Scholar
  15. 15.
    Menon D, Calvagno G (2009) Regularization approaches to demosaicking. IEEE Trans Image Process 18(10):2209–2220MathSciNetCrossRefGoogle Scholar
  16. 16.
    Menon D, Andriani S, Calvagno G (2007) Demosaicing with directional filtering and a posteriori decision. IEEE Trans Image Process 16(1):132–141MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pei S-C, Tam I-K (2003) Effective color interpolation in CCD color filter arrays using signal correlation. IEEE Trans Circ Syst Video Technol 13(6):503–513CrossRefGoogle Scholar
  18. 18.
    Pekkucuksen I, Altunbasak Y (2012) Edge strength filter based color filter array interpolation. IEEE Trans Image Process 21(1):393–397MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pekkucuksen I, Altunbasak Y (2013) Multiscale gradients-based color filter array interpolation. IEEE Trans Image Process 22(1):157–165MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sadeghipoor Z, Lu YM, Süsstrunk S (2011) Correlation-based joint acquisition and demosaicing of visible and near-infrared images. Proc IEEE ICIP: 3165–3168Google Scholar
  21. 21.
    Su C-Y, Kao W-C (2009) Effective demosaicing using subband correlation. IEEE Trans Consumer Electron 55(1):199–204CrossRefGoogle Scholar
  22. 22.
    Wang J, Wu J, Wu Z, Jeon G, Jeong J (2017) Bilateral filtering and directional differentiation for Bayer demosaicking. IEEE Sensors J 17(3):726–734CrossRefGoogle Scholar
  23. 23.
    Zhang X, Wandell BA (1997) A spatial extension of CIELAB for digital color image reproduction. J Soc Inf Display 5(1):61–67CrossRefGoogle Scholar
  24. 24.
    Zhang L, Wu X, Buades A, Li X (2011) Color demosaicking by local directional interpolation and non-local adaptive thresholding. J Electron Imag 20(2):023016CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Processing 8(8):2378–2386MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Computer EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations