Graph steered discriminative projections based on collaborative representation for Image recognition

  • Li LiuEmail author
  • Bin Zhang
  • Huaxiang Zhang
  • Na Zhang


Dimensionality reduction techniques are commonly used for image recognition. We propose a graph steered dimensionality reduction method called Discriminative Projections based on Collaborative Representation (DPCR) by transforming the dimensionality reduction task into a graph embedding framework. DPCR utilizes the collaborative representation to construct within-class and between-class graphs. To improve the discriminative performance of dimensionality reduction, DPCR introduces the label information into graph building. The novel method not only avoids the difficulty of finding proper neighborhood but also inherits the merits of manifold learning methods and the robustness of collaborative representation techniques. Experiments on benchmark datasets demonstrate its effectiveness.


Collaborative representation Graph embedding Dimensionality reduction Image recognition 



The work is supported by the National Natural Science Foundation of China (No.61702310 and 61772322), the Key Research and Development Foundation of Shandong Province (No. 2016GGX101009).


  1. 1.
    Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 14(6):585–591Google Scholar
  2. 2.
    Cox MAA, Cox TF (2008) Multidimensional scaling. Springer, Berlin HeidelbergzbMATHGoogle Scholar
  3. 3.
    Cui H, Zhu L, Cui C, Nie X, Zhang H Efficient weakly-supervised discrete hashing for large-scale social image retrieval. Pattern Recogn Lett.
  4. 4.
    Gui J, Sun Z, Jia W, Hu RX, Lei YK, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn 45(8):2884–2893CrossRefGoogle Scholar
  5. 5.
    He X (2003) Locality preserving projections. Adv Neural Inf Proces Syst 16(1):186–197Google Scholar
  6. 6.
    He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. IEEE Int Conf Comput Vision, Beijing, China: 1208–1213Google Scholar
  7. 7.
    Lai J, Jiang X (2014) Discriminative sparsity preserving embedding for face recognition. Int Conf Image Process: 3695–3699Google Scholar
  8. 8.
    Li Z, Nie F, Chang X, Yang Y (2017) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. Trans Knowl Data Eng 29(10):2100–2100CrossRefGoogle Scholar
  9. 9.
    Liu X, Xu Q, Chau T, Mu Y, Zhu L, Yan S(2018) Revisiting jump-diffusion process for visual tracking: a reinforcement learning approach. Trans Circ Syst Video Technol 8(3):38–49Google Scholar
  10. 10.
    Liu X, Xu Y, Zhu L, Mu Y (2018) A stochastic attribute grammar for robust cross-view human tracking. Trans Circ Syst Video Technol 28(10):2884–2895CrossRefGoogle Scholar
  11. 11.
    Lu G, Tang G, Zou J (2016) Spare L1-norm-based maximum margin criterion. Visual Commun Image Rep 38:11–17CrossRefGoogle Scholar
  12. 12.
    Lu X, Zhu L, Cheng Z, Song X, Zhang H (2019) Efficient discrete latent semantic hashing for scalable cross-modal retrieval. Signal Process 154:217–231CrossRefGoogle Scholar
  13. 13.
    Luo M, Chang X, Li Z, Nie L, Hauptmann AG, Zheng Q (2017) Simple to complex cross-modal learning to rank. Comput Vis Image Underst 163:67–77CrossRefGoogle Scholar
  14. 14.
    Ma Z, Chang X, Xu Z, Sebe N, Hauptmann AG (2018) Joint attributes and event analysis for multimedia event detection. IEEE Trans Neural Netw Learn Syst 29(7):2921–2930MathSciNetGoogle Scholar
  15. 15.
    Nie L, Wang M, Zha ZJ, Chua TS (2012) Oracle in image search: a content-based approach to performance prediction. Trans Inform Syst 30(2):1–23CrossRefGoogle Scholar
  16. 16.
    Nie L, Song X, Chua TS (2016) Learning from multiple social networks. Synthesis lectures on information concepts retrieval and services, Morgan Claypool, USAGoogle Scholar
  17. 17.
    Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341CrossRefGoogle Scholar
  18. 18.
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefGoogle Scholar
  19. 19.
    Sakai H, Liu C, Nakata M (2016) Information dilution: Granule-based information hiding in table data - A case of lenses data set in UCI Mach Learn repository. International Conference on Computing Measurement Control and Sensor Network, Matsue, Japan: 52–55Google Scholar
  20. 20.
    Tenenbaum JB (1998) Mapping a manifold of perceptual observations. Adv Neural Inf Proces Syst: 682–688Google Scholar
  21. 21.
    Turk MA, Pentland A(1991) Face recognition using eigenfaces. Computer society conference on computer vision and Pattern Recogn: 586–591Google Scholar
  22. 22.
    Wang Y, Zhang H, Yang F (2017) A weighted sparse neighborhood-preserving projections for face recognition. J Res 63:358–367Google Scholar
  23. 23.
    Wang Q, Gao Q, Xie D, Gao X, Wang Y (2018) Robust dlpp with nongreedy ℓ1-norm minimization and maximization. IEEE Trans Neural Netw Learn Syst 29(3):738–743MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xie L, Shen J, Han J, Zhu L, Shao L (2017) Dynamic multi-view hashing for online image retrieval. Int Joint Conf Artif Intell: 3133–3139Google Scholar
  25. 25.
    Yang J, Chu D (2010) Sparse representation classifier steered discriminative projection. International Conference on Pattern Recognition, Istanbul, Turkey: 694–697Google Scholar
  26. 26.
    Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. Trans Neural Netw Learn Syst 24(7):1023–1035CrossRefGoogle Scholar
  27. 27.
    Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRefGoogle Scholar
  28. 28.
    Zhang H, Lu J (2009) Semi-supervised fuzzy clustering: a kernel-based approach. Knowl-Based Syst 22(6):477–481CrossRefGoogle Scholar
  29. 29.
    Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? International conference on computer vision, Barcelona, Spain, November ,pp 471–478Google Scholar
  30. 30.
    Zhu L, Huang Z, Li Z, Xie L, Shen H T (2018) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval,29(11):5264–5276Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and EngineeringShandong Normal UniversityJinanChina

Personalised recommendations