Advertisement

Automated approaches for ROIs extraction in medical thermography: a review and future directions

  • Jaspreet SinghEmail author
  • Ajat Shatru Arora
Article
  • 27 Downloads

Abstract

Historically, the skin temperature has been used as a functional indicator of the processes undergoing inside the body, where the anomalous change in temperature gives indication of illness. Infrared thermography (IRT) is a non-invasive approach which radiometrically measures the temperature distribution on the object’s surface based on emanating IR radiation. In medical field, IRT has been used to diagnose the various problems associated with superficial body parts since 1960s. The clinical abnormalities can be diagnosed by visual and subjective analysis of the thermograms, but human based diagnoses are likely to be influenced by narcissus effect, negligence, visual exhaustion and mental workload. Apart, the deep and objective diagnostic information, like severity and type of a disease can only be obtained by statistically analyse the region of interest (ROI). So, the segmentation of ROI has often been an initial step in medical diagnosis, where the automated approaches lead to fast and highly reproducible analysis. Recent advancement in deep learning opens a new way for effective computer-aided medical diagnosis, several studies have proposed deep learning based automatic segmentation and data classification. This review focuses on the wide range of image processing techniques adopted for automatic segmentation of various clinically significant ROIs, like breast, face, foot, hand etc. In addition, the present efforts are targeted on the selection of characteristic points for an effective automatic segmentation and identification of new areas to carry out the further research. Besides, the basics of medical IRT, need of automatic segmentation and factors which hinder the automatic segmentation in IRT are also discussed.

Keywords

Infrared thermography Computer-aided medical diagnosis Deep learning Automatic segmentation Performance validation 

Notes

Acknowledgements

The first author is pursuing a doctorate degree and second author is Professor at Department of Electrical & Instrumentation Engineering, SLIET. Therefore, the authors acknowledge the financial support by this institution.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest relevant to this study.

References

  1. 1.
    Abdel-Nasser M, Saleh A, Moreno A, Puig D (2016) Automatic nipple detection in breast thermograms. Expert Syst Appl 64:365–374.  https://doi.org/10.1016/j.eswa.2016.08.026 CrossRefGoogle Scholar
  2. 2.
    Acharya UR, Ng EYK, Tan J-H, Sree SV (2012) Thermography based breast Cancer detection using texture features and support vector machine. J Med Syst 36:1503–1510.  https://doi.org/10.1007/s10916-010-9611-z CrossRefGoogle Scholar
  3. 3.
    Acharya UR, Tan JH, Koh JEW, Sudarshan VK, Yeo S, Too CL, Chua CK, Ng EYK, Tong L (2015) Automated diagnosis of dry eye using infrared thermography images. Infrared Phys Technol 71:263–271.  https://doi.org/10.1016/j.infrared.2015.04.007 CrossRefGoogle Scholar
  4. 4.
    Amalu WC, Hobbins WB, Head JF, Elliot RL (2006) Infrared imaging of the breast—an overview. Med Dev Syst 25:1–22Google Scholar
  5. 5.
    Ammer K, Ring EFJ (2007) Standard procedures for infrared imaging in medicine. N.A. Diakides, J.D. Bronzino (Eds.), Med. Infrared Imaging, CRC Press: 22.1–22.14Google Scholar
  6. 6.
    Bagavathiappan S, Philip J, Jayakumar T, Raj B, Rao PNS, Varalakshmi M, Mohan V (2010) Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique. J Diabetes Sci Technol 4:1386–1392.  https://doi.org/10.1177/193229681000400613 CrossRefGoogle Scholar
  7. 7.
    Barcelos EZ, Caminhas WM, Ribeiro E, Pimenta EM, Palhares RM (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors (Switzerland) 14:21950–21967.  https://doi.org/10.3390/s141121950 CrossRefGoogle Scholar
  8. 8.
    Cho KS, Yoon J (2014) Fever screening and detection of febrile arrivals at an international airport in Korea: association among self-reported fever, infrared thermal camera scanning, and tympanic temperature. Epidemiol Health 36:e2014004.  https://doi.org/10.4178/epih/e2014004 CrossRefGoogle Scholar
  9. 9.
    Cohen EE, Ahmed O, Kocherginsky M, Shustakova G, Kistner-Griffin E, Salama JK, Yefremenko V, Novosad V (2013) Study of functional infrared imaging for early detection of mucositis in locally advanced head and neck cancer treated with chemoradiotherapy. Oral Oncol 49:1025–1031.  https://doi.org/10.1016/j.oraloncology.2013.07.009 CrossRefGoogle Scholar
  10. 10.
    Conci A, Galvão SSL, Sequeiros GO, Saade DCM, MacHenry T (2015) A new measure for comparing biomedical regions of interest in segmentation of digital images. Discret Appl Math: 103–113. doi: https://doi.org/10.1016/j.dam.2015.06.002
  11. 11.
    Costa ACS, Dibai Filho AV, Packer AC, Rodrigues-Bigaton D (2013) Intra and inter-rater reliability of infrared image analysis of masticatory and upper trapezius muscles in women with and without temporomandibular disorder. Brazilian J Phys Ther 17:24–31.  https://doi.org/10.1590/S1413-35552012005000058 CrossRefGoogle Scholar
  12. 12.
    Dayakshini D, Kamath S, Prasad K, Rajagopal KV (2015) Segmentation of breast Thermogram images for the detection of breast Cancer – a projection profile approach. J Image Graph 3:47–51.  https://doi.org/10.18178/joig.3.1.47-51 CrossRefGoogle Scholar
  13. 13.
    Denoble AE, Hall N, Pieper CF, Kraus VB (2010) Patellar skin surface temperature by thermography reflects knee osteoarthritis severity. Clin Med Insights Arthritis Musculoskelet Disord 3:69–75.  https://doi.org/10.4137/CMAMD.S5916 CrossRefGoogle Scholar
  14. 14.
    Di Zhang H, He Y, Wang X, Shao HW, Mu LZ, Zhang J (2010) Dynamic infrared imaging for analysis of fingertip temperature after cold water stimulation and neurothermal modeling study. Comput Biol Med 40:650–656.  https://doi.org/10.1016/j.compbiomed.2010.05.003. CrossRefGoogle Scholar
  15. 15.
    Duarte A, Carrão L, Espanha M, Viana T, Freitas D, Bártolo P, Faria P, Almeida HA (2014) Segmentation algorithms for thermal images. Procedia Technol 16:1560–1569.  https://doi.org/10.1016/j.protcy.2014.10.178 CrossRefGoogle Scholar
  16. 16.
    Etehadtavakol M, Sadri S, Ng EYK (2010) Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images. J Med Syst 34:35–42.  https://doi.org/10.1007/s10916-008-9213-1 CrossRefGoogle Scholar
  17. 17.
    Etehadtavakol M, Chandran V, Ng EYK, Kafieh R (2013) Breast cancer detection from thermal images using bispectral invariant features. Int J Therm Sci 69:21–36.  https://doi.org/10.1016/j.ijthermalsci.2013.03.001 CrossRefGoogle Scholar
  18. 18.
    Etehadtavakol M, Ng EYK, Kaabouch N (2017) Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm. Infrared Phys Technol 86:66–76.  https://doi.org/10.1016/j.infrared.2017.08.022 CrossRefGoogle Scholar
  19. 19.
    Fernández-Cuevas I, Marins JC, Carmona PG, García-Concepción MA, Lastras JA, Quintana MS (2012) Reliability and reproducibility of skin temperature of overweight subjects by an infrared thermography software designed for human beings. Thermol Int 22:130–137.  https://doi.org/10.1371/journal.pone.0167428 CrossRefGoogle Scholar
  20. 20.
    Font-Aragones X, Faundez-Zanuy M, Mekyska J (2013) Thermal hand image segmentation for biometric recognition. IEEE Aerosp Electron Syst Mag 28:4–14.  https://doi.org/10.1109/MAES.2013.6533739 CrossRefGoogle Scholar
  21. 21.
    Fournet D, Redortier B, Havenith G (2012) A method for whole-body skin temperature mapping in humans. Thermol. Int. 22:157–159Google Scholar
  22. 22.
    Gaber T, Ismail G, Anter A, Soliman M, Ali M, Semary N, Hassanien AE, Snasel V (2015) Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm, Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2015–Novem (2015) 4254–4257. doi: https://doi.org/10.1109/EMBC.2015.7319334
  23. 23.
    Gauci J, Falzon O, Camilleri KP, Formosa C, Gatt A, Ellul C, Mizzi S, Mizzi A, Cassar K, Chockalingam N (2016) Automated segmentation and temperature extraction from thermal images of human hands, shins and feet. IFMBE Proc: 275–280. doi: https://doi.org/10.1007/978-3-319-32703-7_55
  24. 24.
    Ghosh P, Mitchell M, Gold J (2010) Segmentation of medical images using a genetic algorithm. Image Process Mach Vis Appl III: 75380DGoogle Scholar
  25. 25.
    Golestani N, EtehadTavakol M, Ng EYK (2014) Level set method for segmentation of infrared breast thermograms. EXCLI J 13:241–251Google Scholar
  26. 26.
    Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno J, Ramirez-Cortes J, Renero-Carrillo F (2015) Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum. Infrared Phys Technol 73:149–157.  https://doi.org/10.1016/j.infrared.2015.09.022 CrossRefGoogle Scholar
  27. 27.
    Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno J, Gonzalez-Bernal JA, Altamirano-Robles L (2017) A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys Technol 81:242–249.  https://doi.org/10.1016/j.infrared.2017.01.010 CrossRefGoogle Scholar
  28. 28.
    Herry CL, Frize M, Goubran RA (2006) Segmentation and landmark identification in infrared images of the human body. Annu Int Conf IEEE Eng Med Biol Proc: 957–960. doi: https://doi.org/10.1109/IEMBS.2006.260077
  29. 29.
    Jakubowska T, Wiecek B, Wysocki M, Drews-Peszynski C Thermal signatures for breast cancer screening comparative study. Proc 25th Annu Int Conf IEEE Eng Med Biol Soc 2003:1117–1120Google Scholar
  30. 30.
    Jin C, Yang Y, Xue Z-J, Liu K-M, Liu J (2013) Automated analysis method for screening knee osteoarthritis using medical infrared thermography. J Med Biol Eng 33:471–477.  https://doi.org/10.5405/jmbe.1054. CrossRefGoogle Scholar
  31. 31.
    Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17:1019–1027.  https://doi.org/10.1109/42.746635 CrossRefGoogle Scholar
  32. 32.
    Jones BF, Plassmann P (2002) Digital infrared thermal imaging of human skin. IEEE Eng Med Biol Mag 21:41–48.  https://doi.org/10.1109/MEMB.2002.1175137 CrossRefGoogle Scholar
  33. 33.
    Kaabouch N, Chen Y, Anderson J, Ames F, Paulson R (2009) Asymmetry analysis based on genetic algorithms for the prediction of foot ulcers, 7243 724304–1–724304–6. doi: https://doi.org/10.1117/12.805975
  34. 34.
    Kaabouch N, Chen Y, Hu W-C, Anderson J, Ames F, Paulson R (2009) Early detection of foot ulcers through asymmetry analysis. Proc SPIE 7262:72621L–72621L–9.  https://doi.org/10.1117/12.811676 CrossRefGoogle Scholar
  35. 35.
    Kaabouch N, Hu W-C, Chen Y, Anderson JW, Ames F, Paulson R (2010) Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images. J Biomed Opt 15:61715.  https://doi.org/10.1117/1.3524233 CrossRefGoogle Scholar
  36. 36.
    Kaabouch N, Chen Y, Hu W-C, Anderson FA, Paulson R (2011) Enhancement of the asymmetry-based overlapping analysis through features extraction. J Electron Imaging 20:13012.  https://doi.org/10.1117/1.3553240 CrossRefGoogle Scholar
  37. 37.
    Kaabouch N, Hu W-C, Chen Y (2011) Alternative technique to asymmetry analysis-based overlapping for foot ulcer examination: scalable scanning. J Diabetes Metab 1. doi: https://doi.org/10.4172/2155-6156.S5-003
  38. 38.
    Kapoor P, Prasad SVAV (2010) Image processing for early diagnosis of breast cancer using infrared images. Comput Autom Eng ICCAE 2010 2nd Int Conf 3:564–566.  https://doi.org/10.1109/ICCAE.2010.5451827 CrossRefGoogle Scholar
  39. 39.
    Kapoor P, Prasad SVAV, Patni S (2012) Image segmentation and asymmetry analysis of breast Thermograms for tumor detection. Int J Comput Appl 50:40–45Google Scholar
  40. 40.
    Koay J, Herry C, Frize M (2004) Analysis of breast thermography with an artificial neural network. Conf Proc IEEE Eng Med Biol Soc 2:1159–1162.  https://doi.org/10.1109/IEMBS.2004.1403371. CrossRefGoogle Scholar
  41. 41.
    Koprowski R (2015) Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture. Comput Biol Med 62:110–118.  https://doi.org/10.1016/j.compbiomed.2015.04.017 CrossRefGoogle Scholar
  42. 42.
    Kuruganti PT, Qi H (2002) Asymmetry analysis in breast cancer detection using thermal infrared images. Proc Sec Jt 24th Annu Conf Annu Fall Meet Biomed Eng Soc [Engineering Med Biol: 1155–1156. doi: https://doi.org/10.1109/IEMBS.2002.1106323
  43. 43.
    Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235.  https://doi.org/10.1016/j.infrared.2012.03.007 CrossRefGoogle Scholar
  44. 44.
    Lee JG, Kim SG, Lim KJ, Choi KC (2007) Thermographic assessment of inferior alveolar nerve injury in patients with Dentofacial deformity. J Oral Maxillofac Surg 65:74–78.  https://doi.org/10.1016/j.joms.2005.11.098 CrossRefGoogle Scholar
  45. 45.
    Liu C, van der Heijden F, Klein ME, van Baal JG, Bus SA, van Netten JJ (2013) Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study. Adv Biomed Clin Diagnostic Syst XI: 85720N. doi: https://doi.org/10.1117/12.2001807
  46. 46.
    Liu C, van Netten JJ, van Baal JG, Bus SA, van der Heijden F (2015) Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis. J Biomed Opt 20:26003.  https://doi.org/10.1117/1.JBO.20.2.026003 CrossRefGoogle Scholar
  47. 47.
    Machado DA, Giraldi G, Novotny AA, Marques RS, Conci A (2013) Topological derivative applied to automatic segmentation of frontal breast Thermograms, work. Visao Comput. Rio JaneiroGoogle Scholar
  48. 48.
    Mahmoudzadeh E, Montazeri MA, Zekri M, Sadri S (2015) Extended hidden Markov model for optimized segmentation of breast thermography images. Infrared Phys Technol 72:19–28.  https://doi.org/10.1016/j.infrared.2015.06.012 CrossRefGoogle Scholar
  49. 49.
    Mahmoudzadeh E, Zekri M, Montazeri MA, Sadri S, Dabbagh ST (2016) Directional SUSAN image boundary detection of breast thermogram. IET Image Process 10:552–560.  https://doi.org/10.1049/iet-ipr.2015.0347 CrossRefGoogle Scholar
  50. 50.
    Martinez B, Binefa X, Pantic M (2010) Facial component detection in thermal imagery. 2010 IEEE Comput Soc Conf Comput Vis Pattern Recogn Work CVPRW 2010: 48–54. doi: https://doi.org/10.1109/CVPRW.2010.5543605.
  51. 51.
    Marzec M, Koprowski R, Wróbel Z, Kleszcz A, Wilczyński S (2015) Automatic method for detection of characteristic areas in thermal face images. Multimed Tools Appl 74:4351–4368.  https://doi.org/10.1007/s11042-013-1745-9 CrossRefGoogle Scholar
  52. 52.
    Marzec M, Lamża A, Wróbel Z, Dziech A (2016) Fast eye localization from thermal images using neural networks, Multimed Tools Appl 1–14. doi: https://doi.org/10.1007/s11042-016-4094-7
  53. 53.
    Matos F, Neves EB, Norte M, Rosa C, Reis VM, Vilaça-Alves J (2015) The use of thermal imaging to monitoring skin temperature during cryotherapy: a systematic review. Infrared Phys Technol 73:194–203.  https://doi.org/10.1016/j.infrared.2015.09.013 CrossRefGoogle Scholar
  54. 54.
    Moghbel M, Mahmud HR, Mashohor S, Bin Saripan MI (2012) Random walkers based segmentation method for breast thermography. 2012 IEEE-EMBS Conf Biomed Eng Sci IECBES 2012: 627–630. doi: https://doi.org/10.1109/IECBES.2012.6498046
  55. 55.
    Moghbel M, Mashohor S, Mahmud R, Bin Saripan MI, Hamid SA, Mohamad Sani S, Nizam S (2017) Breast boundary segmentation in thermography images based on random walkers. Turkish J Electr Eng Comput Sci 25:1733–1750.  https://doi.org/10.3906/elk-1601-148 CrossRefGoogle Scholar
  56. 56.
    Mohiyuddin N, Warhade KK (2014) Segmentation of thermal images for evaluation of rheumatoid arthritis disease. Int J Emerg Eng Res Technol 2:35–44Google Scholar
  57. 57.
    Mohiyuddin N, Dhage P, Warhade KK (2014) Rheumatoid arthritis detection using thermal imaging and fuzzy-C-means algorithm, Int. J Comput Math Sci 3:46–55Google Scholar
  58. 58.
    Motta LS, Conci A, Lima R, Diniz E, Luís S (2010) Automatic segmentation on thermograms in order to aid diagnosis and 2D modeling, proc. 10th Work Em Informática Médica 1610–1619. http://www.inf.pucminas.br/sbc2010/anais/pdf/wim/st05_04.pdf
  59. 59.
    Nandagopan GL, Bhargavi Haripriya A (2016) Implementation and comparison of two image segmentation techniques on thermal foot images and detection of ulceration using asymmetry. Int Conf Commun Signal Process ICCSP 2016: 356–360. doi: https://doi.org/10.1109/ICCSP.2016.7754155
  60. 60.
    Ng EYK, Chen Y (2006) Segmentation of breast thermogram: improved boundary detection with modified snake algorithm, J. Mech Med Biol 6:123–136CrossRefGoogle Scholar
  61. 61.
    de Oliveira JPS, Conci A, Perez MG, Andaluz VH (2015) Segmentation of infrared images: a new technology for early detection of breast diseases. 2015 IEEE Int Conf Ind Technol: 1765–1771. doi: https://doi.org/10.1109/ICIT.2015.7125353
  62. 62.
    Pramanik S, Bhowmik MK, Bhattacharjee D, Nasipuri M (2016) Hybrid intelligent techniques for segmentation of breast thermograms. In: Hybrid soft Comput. Image segmentation, pp 255–289.  https://doi.org/10.1007/978-3-319-47223-2_11. CrossRefGoogle Scholar
  63. 63.
    Qi H, Head JF (2001) Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms. Eng Med Biol Soc 2001 Proc 23rd Annu Int Conf IEEE 3:2866–2869CrossRefGoogle Scholar
  64. 64.
    Qi H, Kuruganti PT, Snyder WE (2007) Detecting breast cancer from infrared images by asymmetry analysis, in: N.A. Diakides, J.D. Bronzino (Eds.), Med. Infrared Imaging, CRC Press: 11.1–11.14Google Scholar
  65. 65.
    Ring EFJ (2007) The historical development of temperature measurement in medicine. Infrared Phys Technol 49:297–301.  https://doi.org/10.1016/j.infrared.2006.06.029 CrossRefGoogle Scholar
  66. 66.
    Ring EF, Ammer K (n.d.) Recruitment of healthy subjects for building a reference database of normal thermograms of the human body. https://atweb1.comp.glam.ac.uk/staff/pplassma/MedImaging/Projects/IR/Atlas/StdViews/Glamorgan.doc
  67. 67.
    Saniei E, Setayeshi S, Akbari ME, Navid M (2015) A vascular network matching in dynamic thermography for breast cancer detection. Quant Infrared Thermogr J 12:24–36.  https://doi.org/10.1080/17686733.2015.1005398 CrossRefGoogle Scholar
  68. 68.
    Sathish D, Kamath S, Prasad K, Kadavigere R, Martis RJ (2017) Asymmetry analysis of breast thermograms using automated segmentation and texture features. Signal, Image Video Process 11:745–752.  https://doi.org/10.1007/s11760-016-1018-y CrossRefGoogle Scholar
  69. 69.
    G. Schaefer, R.J. Tait, K. Howell, A. Hopgood, P. Woo, J. Harper, Automated overlay of infrared and visual medical images, User Centered Design for Medical Visualization (2008) 174–183. doi: https://doi.org/10.4018/978-1-59904-777-5.ch008
  70. 70.
    Selfe J, Hardaker N, Thewlis D, Karki A (2006) An accurate and reliable method of thermal data analysis in thermal imaging of the anterior knee for use in cryotherapy research. Arch Phys Med Rehabil 87:1630–1635.  https://doi.org/10.1016/j.apmr.2006.08.346 CrossRefGoogle Scholar
  71. 71.
    Selvarasu N, Vivek S, Nandhitha NM (2007) Performance evaluation of image processing algorithms for automatic detection and quantification of abnormality in medical Thermograms. Conf Comput Intell Multimed Appl 2007 Int Conf: 388–393. doi: https://doi.org/10.1109/ICCIMA.2007.216
  72. 72.
    Selvarasu N, Nachiappan A, Nandhitha NM (2009) Feature extraction algorithms for abnormality quantification from medical Thermograms. Int J Recent Trends Engneering 1:350–352Google Scholar
  73. 73.
    Silva LF, Saade DCM, Sequeiros GO, Silva AC, Paiva AC, Bravo RS, Conci A (2014) A new database for breast research with infrared image. J Med Imaging Heal Informatics 4:92–100.  https://doi.org/10.1166/jmihi.2014.1226 CrossRefGoogle Scholar
  74. 74.
    Singh J, Arora AS (2017) A framework for enhancing the thermographic evaluation on characteristic areas for paranasal sinusitis detection. Infrared Phys Technol 85:457–464.  https://doi.org/10.1016/j.infrared.2017.08.011 CrossRefGoogle Scholar
  75. 75.
    Singh J, Arora AS (2018) An automated approach to enhance the thermographic evaluation on orofacial regions in lateral facial thermograms. J Therm Biol 71:91–98.  https://doi.org/10.1016/j.jtherbio.2017.11.001 CrossRefGoogle Scholar
  76. 76.
    Singh J, Kumar S, Arora AS (2018) Thermographic evaluation of mindfulness meditation using dynamic IR imaging. Infrared Phys Technol 95:81–87CrossRefGoogle Scholar
  77. 77.
    Snekhalatha U, Anburajan M, Sowmiya V, Venkatraman B, Menaka M (2015) Automated hand thermal image segmentation and feature extraction in the evaluation of rheumatoid arthritis. Proc Inst Mech Eng Part H J Eng Med 229:319–331.  https://doi.org/10.1177/0954411915580809 CrossRefGoogle Scholar
  78. 78.
    Sousa E, Vardasca R, Mendes J, Costa-Ferreira A (2018) Towards the automatic detection of hand fingertips and phalanges in thermal images. Lect Notes Comput Vis Biomech 27:1053–1062.  https://doi.org/10.1007/978-3-319-68195-5_117 CrossRefGoogle Scholar
  79. 79.
    Strąkowska M, Strąkowski R (2015) Automatic eye corners detection and tracking algorithm in sequence of thermal medical images. Measurement Automation Monitoring 61:199–202Google Scholar
  80. 80.
    Suganthi SS, Ramakrishnan S (2014) Anisotropic diffusion filter based edge enhancement for segmentation of breast thermogram using level sets. Biomed Signal Process Control 10:128–136.  https://doi.org/10.1016/j.bspc.2014.01.008 CrossRefGoogle Scholar
  81. 81.
    Tan JH, Ng E, Acharya UR (2008) Detection of eye and cornea on IR thermogram using genetic snake algorithm. 9th Int Conf Quant Infrared Thermogr Krakow: 143150. http://qirt.org/archives/qirt2008/papers/03_11_17.pdf
  82. 82.
    Tan JH, Ng EYK, Acharya UR, Chee C (2009) Infrared thermography on ocular surface temperature : a review. Infrared Phys Technol 52:97–108.  https://doi.org/10.1016/j.infrared.2009.05.002 CrossRefGoogle Scholar
  83. 83.
    Tan JH, Ng EYK, Acharya UR (2009) Automated detection of eye and cornea on infrared thermogram using snake and target tracing function coupled with genetic algorithm. Quant Infrared Thermogr J 6:21–36.  https://doi.org/10.3166/qirt.6.21-36 CrossRefGoogle Scholar
  84. 84.
    Tan JH, Ng EYK, Acharya UR, Chee C (2010) Automated study of ocular thermal images: comprehensive analysis of corneal health with different age group subjects and validation. Digit Signal Process A Rev J 20:1579–1591.  https://doi.org/10.1016/j.dsp.2010.03.014 CrossRefGoogle Scholar
  85. 85.
    Thomas RA, Donne KE, Clement M, Kiernan M (2002) Optimised laser application in dermatology using infrared thermography. Proc SPIE - Int Soc Opt Eng 4710:424–434.  https://doi.org/10.1117/12.459592. CrossRefGoogle Scholar
  86. 86.
    Trujillo L, Olague G, Hammoud R, Hernandez B (2005) Automatic feature localization in thermal images for facial expression recognition, Comput Vis Pattern Recognition-Workshops, 2005. CVPR Work IEEE Comput Soc Conf 14. doi: https://doi.org/10.1109/CVPR.2005.415
  87. 87.
    Umapathy S, Vasu S, Gupta N (2017) Computer aided diagnosis based hand thermal image analysis: a potential tool for the evaluation of rheumatoid arthritis. J Med Biol Eng: 1–12. doi: https://doi.org/10.1007/s40846-017-0338-x
  88. 88.
    Vilcahuaman L, Harba R, Canals R, Zequera M, Wilches C, Arista MT, Torres L, Arbañil H (2015) Automatic analysis of plantar foot thermal images in at-risk type II diabetes by using an infrared camera. World Congr Med Phys Biomed Eng Springer, Toronto: 228–231Google Scholar
  89. 89.
    Villalobos-Montiel AJ, Chacon-Murguia MI, Calderon-Contreras JD, Ortega-Maynez L (2015) Automatic segmentation of regions of interest in breast thermographic images. Mex Conf Pattern Recogn: 135–144. doi: https://doi.org/10.1007/978-3-319-19264-2_14
  90. 90.
    Wakankar AT, Suresh GR (2016) Automatic diagnosis of breast cancer using thermographic color analysis and SVM classifier. Adv Intell Syst Comput: 21–32. doi: https://doi.org/10.1007/978-3-319-47952-1_2
  91. 91.
    Wang S, Shen P, Liu Z (2013) Eye localization from infrared thermal images, IAPR work. Multimodal pattern Recognit. Soc. signals human-computer interact. Springer, Berlin, pp 35–42Google Scholar
  92. 92.
    Wiecek B (2005) Review on thermal image processing for passive and active thermography. Conf Proc IEEE Eng Med Biol Soc 1:686–689.  https://doi.org/10.1109/IEMBS.2005.1616506
  93. 93.
    Wiecek B, Strzelecki M, Jakubowska T, Wysocki M, Drews-Peszynski C (2007) Advanced Thermal Image Processing, in: N.A. Diakides, J.D. Bronzino (Eds.), Med. Infrared Imaging, CRC Press: 12.1–12.13Google Scholar
  94. 94.
    Zadeh HG, Kazerouni IA, Haddadnia J (2011) Distinguish breast cancer based on thermal features in infrared images. Can J Image Process Comput Vis 2:54–58Google Scholar
  95. 95.
    Zadeh HG, Haddadnia J, Seryasat OR, Isfahani SMM (2016) Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI J 15:532–550.  https://doi.org/10.17179/excli2016-273

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Instrumentation EngineeringSant Longowal Institute of Engineering and TechnologyPunjabIndia

Personalised recommendations