Advertisement

A Turtle Shell based RDH scheme with two-dimensional histogram shifting

  • Xiao-Zhu Xie
  • Chin-Chen Chang
  • Chia-Chen LinEmail author
  • Jia-Long Lin
Article

Abstract

A turtle shell (TS) based reversible data hiding (RDH) scheme with two-dimensional histogram shifting (HS) is proposed. The proposed scheme extends the embeddable set from a peak point in HS scheme to a two-dimensional region, so as to improve the embedding capacity (EC). Firstly, a threshold T is used to divide the pixel-pairs into three groups: left-shifting set without embedding (LSS), right-shifting set without embedding (RSS), and embeddable set (ES). Secondly, pixel-pairs in sets LSS and RSS are shifted outward to vacate room for embedding. Lastly, secret data are embedded into pixel-pairs in set ES. After that, the embedded data can be extracted accurately and the cover image can be recovered losslessly. Furthermore, various requirements of EC can be obtained by adjusting the threshold T. Experimental results verify that this paper can achieve a higher EC than the existing pairwise based schemes while maintaining an acceptable image quality.

Keywords

Turtle shell Reversible data hiding Histogram shifting High capacity 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of P. R. China under Grant 61503316, Natural Science Foundation of Fujian Province under Grant 2018 J01572 and Open Fund of Engineering Research Center for Software Testing and Evaluation of Fujian Province.

References

  1. 1.
    Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding — a survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  2. 2.
    Mielikainen J (2006) LSB matching revisited. IEEE Signal Proc Lett 13(5):285–287CrossRefGoogle Scholar
  3. 3.
    Ker AD (2004) Improved detection of LSB steganography in grayscale images. Proc Inform Hiding Workshop 3200:97–115CrossRefGoogle Scholar
  4. 4.
    Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783CrossRefGoogle Scholar
  5. 5.
    Kim HJ, Kim C, Choi Y (2010) Improved modification direction methods. Comput MathAppl 60(2):319–325MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chang CC, Chou YC, Kieu TD (2008) “An information hiding scheme using Sudoku,” proceedings of the third international conference on innovative computing information and control. Dalian, China, pp 17–22Google Scholar
  7. 7.
    Chang CC, Liu Y, Nguyen TS (2014) “A novel turtle shell based scheme for data hiding,” intelligent information hiding and multimedia signal processing (IIH-MSP), 2014 tenth international conference on. IEEE. Kitakyushu, Japan, pp 89–93CrossRefGoogle Scholar
  8. 8.
    Liu L, Chang CC, Wang A (2017) Data hiding based on extended turtle shell matrix construction method. Multimed Tools Appl 76(10):12233–12250CrossRefGoogle Scholar
  9. 9.
    Barton JM (1997) “Method and apparatus for embedding authentication information within digital data,” U.S. Patent 5(646):997Google Scholar
  10. 10.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  11. 11.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lin CC, Yang SP, Hsueh NL (2008) Lossless data hiding based on difference expansion without a location map. In: Proceedings of congress on image and signal processing (CISP '08), pp 8–12Google Scholar
  13. 13.
    Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inform Forensics Sec 3:456–465CrossRefGoogle Scholar
  14. 14.
    Ni Z, Shi YQ, Ansari N, Wei S (2006) “Reversible data hiding,” IEEE transactions on circuits and Systems for Video. Technology 16(3):354–362Google Scholar
  15. 15.
    Zhao Z, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. AEU – Int J Electron Commun 65(10):814–826CrossRefGoogle Scholar
  16. 16.
    Yan Y, Cao W, Li S (2009) High capacity reversible image authentication based on difference image watermarking. Proc IEEE Int Workshop Image Syst Tech:179–182Google Scholar
  17. 17.
    Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inform Forensics Sec 8:1091–1110CrossRefGoogle Scholar
  18. 18.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842CrossRefGoogle Scholar
  19. 19.
    Chen S, Chen X, Fu H (2017) General framework of reversible watermarking based on asymmetric histogram shifting of prediction error. Adv Multimed 2017:1–9CrossRefGoogle Scholar
  20. 20.
    Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22:5010–5021MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hsiao JY, Lin ZY, Chen PY (2017) Reversible data hiding based on pairwise prediction-error histogram. J Inform Sci Eng 33(2):289–304MathSciNetGoogle Scholar
  22. 22.
    He W, Xiong G, Weng S et al (2018) Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inf Sci:1–16Google Scholar
  23. 23.
    Cao F, An B, Yao H et al (2018) Local complexity based adaptive embedding mechanism for reversible data hiding in digital images. Multimed Tools Appl:1–16Google Scholar
  24. 24.
    Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wang ZH, Lee CF, Chang CY (2013) Histogram-shifting-imitated reversible data hiding. J Syst Softw 86(2):315–323CrossRefGoogle Scholar
  26. 26.
    Kim PH, Kim DS, Yoo KY (2015) “Improved histogram-shifting-imitated reversible data hiding scheme,” proceedings of information technology-new generations. Las Vegas, USA, pp 668–673Google Scholar
  27. 27.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding for all image formats. Sec Watermark Multimed Cont IV 4675:572–583zbMATHGoogle Scholar
  28. 28.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  29. 29.
    Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049CrossRefGoogle Scholar
  30. 30.
    Liu Y, Chang CC (2018) A turtle shell-based visual secret sharing scheme with reversibility and authentication. Multimed Tools Appl 3:1–16Google Scholar
  31. 31.
    The USC-SIPI Image Database [Online]. Available: http://sipi.usc.edu/database/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center for Software Testing and Evaluation of Fujian ProvinceXiamen University of TechnologyXiamenChina
  2. 2.Department of Information Engineering and Computer ScienceFeng Chia UniversityTaichungTaiwan
  3. 3.Department of Computer Science and Information ManagementProvidence UniversityTaichungTaiwan
  4. 4.Department of Information Engineering and Computer ScienceFeng Chia UniversityTaichungTaiwan

Personalised recommendations