Advertisement

Bi-dimensional empirical mode decomposition (BEMD) algorithm based on particle swarm optimization-fractal interpolation

  • Feng-Ping AnEmail author
  • Zhi-Wen Liu
Article
  • 25 Downloads

Abstract

The performance of interpolation algorithm used in bi-dimensional empirical mode decomposition directly affects its popularization and application. Therefore, the research on interpolation algorithm is more reasonable, accurate and fast. So far, in the interpolation algorithm adopted by the bi-dimensional empirical mode decomposition, an adaptive interpolation algorithm can be proposed according to the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. The parameters involved in the interpolation process are optimized by particle swarm optimization algorithm, and the optimal parameters are obtained, which can solve the problem of low efficiency and low precision of interpolation algorithm used in bi-dimensional empirical mode decomposition. It solves the problem that the image cannot be decomposed to obtain accurate and reliable bi-dimensional intrinsic modal function, and realize the fast decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

Keywords

Fractal Particle swarm optimization Bi-dimensional empirical mode decomposition Optimization Image interpolation 

Notes

Acknowledgements

This work is supported by National Science Foundation Project of P. R. China (No. 61701188).

References

  1. 1.
    Akima H, Gebhardt A, Petzoldt T (2013) “akima: interpolation of irregularly spaced data,” R package version 0.5–11, URL http://CRAN.R-project.org/package=akima
  2. 2.
    Al-Baddai S, Al-Subari K, Tomé AM (2016) A Green’s function-based bi-dimensional empirical mode decomposition. Inf Sci 348:305–321.  https://doi.org/10.1016/j.ins.2016.01.089 CrossRefzbMATHGoogle Scholar
  3. 3.
    Bernini MB, Federico A, Kaufmann GH (2008) Noise reduction in digital speckle pattern interferometry using bi-dimensional empirical mode decomposition. Appl Opt 47(14):2592–2598.  https://doi.org/10.1364/AO.47.002592 CrossRefGoogle Scholar
  4. 4.
    Bernini MB, Federico A, Kaufmann GH (2009) Normalization of fringe patterns using the bi-dimensional empirical mode decomposition and the Hilbert transform. Appl Opt 48(36):6862–6869.  https://doi.org/10.1364/AO.48.006862 CrossRefGoogle Scholar
  5. 5.
    Bhuiyan SMA, Attoh-Okine NO, Barner KE (2009) Bi-dimensional empirical mode decomposition using various interpolation techniques. Adv Adapt Data Anal 1(2):309–338.  https://doi.org/10.1142/S1793536909000084 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bornert M, Doumalin P, Dupré JC (2017) Shortcut in DIC error assessment induced by image interpolation used for subpixel shifting. Opt Lasers Eng 91:124–133CrossRefGoogle Scholar
  7. 7.
    Clerc M (2010) Particle swarm optimization. Wiley, Hoboken, pp 321–389Google Scholar
  8. 8.
    De Boor C, Höllig K, Sabin M (1987) High accuracy geometric Hermite interpolation. Comput Aided Geom Des 4(4):269–278.  https://doi.org/10.1016/0167-8396(87)90002-1 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Falconer K, Fractal geometry: mathematical foundations and applications. Hoboken: Wiley, 2004, pp. 109–139Google Scholar
  10. 10.
    Falconer K (2012) Fractals: theory and applications in engineering: theory and applications in engineering. Springer Science & Business Media, Berlin, pp 201–289Google Scholar
  11. 11.
    Goldberg DE (2013) The design of innovation: lessons from and for competent genetic algorithms. Springer Science & Business Media, Berlin, pp 138–165Google Scholar
  12. 12.
    Grefenstette JJ (2013) Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Psychology Press, London, pp 309–337CrossRefGoogle Scholar
  13. 13.
    Grefenstette JJ (2013) Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Psychology Press, London, pp 109–138CrossRefGoogle Scholar
  14. 14.
    He Z, Wang Q, Shen Y (2013) Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Trans Instrum Meas 62(5):889–904.  https://doi.org/10.1109/TIM.2013.2246917 CrossRefGoogle Scholar
  15. 15.
    Ke Y, Sukthankar R (2004) PCA-SIFT: A more distinctive representation for local image descriptors. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE, USA, p 506–513Google Scholar
  16. 16.
    Lei D, Xiaolin H, Feng L (2011) Support vector machines-based method for restraining end effects of B-spline empirical mode decomposition. J Vib Meas Diagn 31(3): 344–347. 3: 1–19Google Scholar
  17. 17.
    Li T, Wang Y (2011) Biological image fusion using a NSCT based variable-weight method. Inform Fusion 12(2):85–92.  https://doi.org/10.1016/j.inffus.2010.03.007 CrossRefGoogle Scholar
  18. 18.
    Lin DC, Guo ZL, An FP (2012) Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mech Syst Signal Process 31(1):13–28.  https://doi.org/10.1016/j.ymssp.2012.02.012 CrossRefGoogle Scholar
  19. 19.
    Linderhed A (2005) Variable sampling of the empirical mode decomposition of two-dimensional signals. Int J Wavelets Multiresolution Inf Process 3(3):435–452.  https://doi.org/10.1142/S0219691305000932 CrossRefzbMATHGoogle Scholar
  20. 20.
    Liu Z, Wang H, Peng S (2004) Texture segmentation using directional empirical mode decomposition. In: Proc. ICIP'04, USA, p 279–282Google Scholar
  21. 21.
    Nunes JC, Bouaouue Y, Delechelle E (2003) Image analysis by bi-dimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026.  https://doi.org/10.1016/S0262-8856(03)00094-5 CrossRefGoogle Scholar
  22. 22.
    Nunes JC, Guyot S, Delechelle E (2005) Texture analysis based on local analysis of the bi-dimensional empirical mode decomposition. Mach Vis Appl 16(3):177–188.  https://doi.org/10.1007/s00138-004-0170-5 CrossRefGoogle Scholar
  23. 23.
    Panichella A, Dit B, Oliveto R (2013) How to effectively use topic models for software engineering tasks? An approach based on genetic algorithms. In: Proceedings of the 2013 International Conference on Software Engineering, USA, p 522–531Google Scholar
  24. 24.
    Rubin SG, Khosla PK (1977) Polynomial interpolation methods for viscous flow calculations. J Comput Phys 24(3):217–244.  https://doi.org/10.1016/0021-9991(77)90036-5 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sadeghi B, Yu R, Wang R (2018) Shifting interpolation kernel toward orthogonal projection. IEEE Trans Signal Process 66(1):101–112MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sastry K, Goldberg DE, Kendall G (2014) Genetic algorithms. Springer US, Berlin, pp 93–117Google Scholar
  27. 27.
    Scrucca L (2013) GA: a package for genetic algorithms in R [J]. J Stat Softw 53(4):1–37CrossRefGoogle Scholar
  28. 28.
    Steeb WH (2014) The nonlinear workbook: chaos, fractals, cellular automata, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, fuzzy logic with C++, Java and SymbolicC++ programs. World Scientific Publishing Co Inc, Singapore, pp 307–334CrossRefGoogle Scholar
  29. 29.
    Torres IC, Rubio JMA, Ipsen R (2012) Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. J Food Eng 109(4):721–729.  https://doi.org/10.1016/j.jfoodeng.2011.11.016 CrossRefGoogle Scholar
  30. 30.
    Wang Z, Bovik AC (2009) Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process Mag 26(1):98–117CrossRefGoogle Scholar
  31. 31.
    Wielgus M, Patorski K (2011) Evaluation of amplitude encoded fringe patterns using the bi-dimensional empirical mode decomposition and the 2D Hilbert transform generalizations. Appl Opt 50(28):5513–5523.  https://doi.org/10.1364/AO.50.005513 CrossRefGoogle Scholar
  32. 32.
    Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1(3):339–372.  https://doi.org/10.1142/S1793536909000187 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xu G, Cheng Q, Zuo R (2016) Application of improved bi-dimensional empirical mode decomposition (BEMD) based on Perona–Malik to identify copper anomaly association in the southwestern Fujian. J Geochem Explor 164:65–74.  https://doi.org/10.1016/j.gexplo.2015.09.013 CrossRefGoogle Scholar
  34. 34.
    Yin S, Cao L, Ling Y (2010) One color contrast enhanced infrared and visible image fusion method. Infrared Phys Technol 53(2):146–150.  https://doi.org/10.1016/j.infrared.2009.10.007 CrossRefGoogle Scholar
  35. 35.
    Zhao J, Zhao P, Chen Y (2016) Using an improved BEMD method to analyse the characteristic scale of aeromagnetic data in the Gejiu region of Yunnan, China. Comput Geosci 88(2016):132–141.  https://doi.org/10.1016/j.cageo.2015.12.016 CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Li H (2011) Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. Opt Express 19(19):18207–18215.  https://doi.org/10.1364/OE.19.018207 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaianChina
  2. 2.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations