Resolution and quality enhancement of images using interpolation and contrast limited adaptive histogram equalization

  • Sahar AboshoshaEmail author
  • O. Zahran
  • Moawad I. Dessouky
  • F. E. Abd El-Samie


In this paper, hybrid models for image quality enhancement are presented comprising both Contrast Limited Adaptive Histogram Equalization (CLAHE) and image interpolation. Adaptive histogram equalization is employed for contrast enhancement, while image interpolation is employed for resolution enhancement. Both the CLAHE and image interpolation are used interchangeably to check the most suitable model for quality enhancement of Low-Resolution (LR) images. The utilized interpolation techniques throughout this paper are polynomial and inverse techniques. Simulation results prove that the application of the CLAHE after interpolation gives the best image quality, especially with regularized inverse interpolation.


CLAHE Polynomial interpolation Contrast enhancement Inverse interpolation 



  1. 1.
    Bhatt P, Patel S, Pandit R (2013) Comparative analysis of interpolation and texture synthesis method for enhancing image. International Journal of Innovative Research in Science, Engineering and Technology 2(1)Google Scholar
  2. 2.
    Blu T, Thevenaz P, Unser M (2001) MOMS: maximal-order interpolation of minimal support. IEEE Trans Image Process 10(7):1069–1080CrossRefGoogle Scholar
  3. 3.
    Cha Y, Kim S (2006) Edge-forming methods for color image zooming. IEEE Trans Image Process 15(8):2315–2323CrossRefGoogle Scholar
  4. 4.
    Chen SD, Ramli A (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319CrossRefGoogle Scholar
  5. 5.
    Chen SD, Ramli A (2003) Contrast enhancement using recursive mean separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309CrossRefGoogle Scholar
  6. 6.
    El-Khamy SE, Hadhoud MM, Dessouky ML, Salam BM, Abd El-Samie FE (2003) Sectioned implementation of regularized image interpolation. In: 46th IEEE Midwest Symposium on Circuits and Systems, vol 2. Cairo, Egypt, pp 656–659Google Scholar
  7. 7.
    El-Khamy SE, Hadhoud MM, Dessouky MI, Salam BM, Abd El-Samie FE (2005) Efficient implementation of image interpolation as an inverse problem. Digital Signal Process 15:137–152. ElsevierGoogle Scholar
  8. 8.
    Garg R, Mittal B, Garg S (2011) Histogram equalization techniques for image enhancement. Int J Electron Commun Technol 2(1):107–111Google Scholar
  9. 9.
    Gonzalez RC, Woods RE (2008) Digital Image Processing, 3rd edn. PearsonGoogle Scholar
  10. 10.
    Hou H, Andrews H (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust Speech Signal Process 26(6):508–517CrossRefGoogle Scholar
  11. 11.
    Hwang JW, Lee HS (2004) Adaptive image interpolation based on local gradient features. IEEE Image and Signal Processing Letters 11(3):359–362CrossRefGoogle Scholar
  12. 12.
    Kim Y, Cho Y (1999) Image enhancing method using mean-separate histogram equalization and a circuit therefor. United States Patent No. 5963665, October 1999Google Scholar
  13. 13.
    Kim M, Chung MG (2008) Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans Consum Electron 54(3):1389–1397Google Scholar
  14. 14.
    Krishna AS, Rao GS, Sravya S (2013) Contrast enhancement techniques using histogram equalization methods on color images with poor lightening. Int J Comput Sci Appl 3(4):15–24Google Scholar
  15. 15.
    Leung WYV, Bones PJ, Lana RG (2001) Statistical interpolation of sampled images. Opt Eng 40(4):547–553Google Scholar
  16. 16.
    Liang L, Zou B, Zhao H, Qiu X (2008) Image interpolation via tangent-control subdivision. IEEE Image and Signal Processing 4:102–106Google Scholar
  17. 17.
    Lixiong L, Bao L, Huang H, Bovik AC (2014) No-reference image quality assessment based on spatial and spectral entropies. Signal Process Image Commun 29:856–863CrossRefGoogle Scholar
  18. 18.
    Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708Google Scholar
  19. 19.
    Prajapati A, Naik S, Mehta S (2012) Evaluation of different image interpolation algorithms. Int J Comput Appl 58(12)Google Scholar
  20. 20.
    Roy R, Pal M, Gulati T (2013) Zooming digital images using interpolation techniques. International Journal of Application or Innovative in Engineering and Technology (IJAIEM) 2(4)Google Scholar
  21. 21.
    Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352MathSciNetCrossRefGoogle Scholar
  22. 22.
    Santhoshi M, Kumari SA, Reddy SS, Kumar AV (2013) Image and video quality assessment with BLIINDS-II algorithm using NSS approach in DCT domain. International Journal of Engineering Science and Innovative Technology (IJESIT) 2(5):35–44Google Scholar
  23. 23.
    Seok B, Kyun D, Jong S (2013) A novel method of determining parameters of CLAHE based on image entropy. Int J Softw Eng Appl 7(5):113–120Google Scholar
  24. 24.
    Thevenaz P, Blu T, Unser M (2000) Interpolation revisited [medical images applications]. IEEE Trans Med Imaging 19(7):739–758CrossRefGoogle Scholar
  25. 25.
    Unser M (1999) Splines: A perfect fit for signal and image processing. IEEE Signal Process Mag 16(6):22–38Google Scholar
  26. 26.
    Unser M, Aldroubi A, Eden M (1993) B-spline signal processing: part I- theory. IEEE Trans Signal Process 41(2):821–833Google Scholar
  27. 27.
    Unser M, Aldroubi A, Eden M (1993) B-spline signal processing: Efficiency design and applications. IEEE Trans Signal Process 41(2):834–848CrossRefGoogle Scholar
  28. 28.
    Vrcelj B, Vaidyanathan PP (2001) Efficient implementation of all-digital interpolation. IEEE Trans Image Process 10(11):1639–1646CrossRefGoogle Scholar
  29. 29.
    Wan Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75CrossRefGoogle Scholar
  30. 30.
    Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576CrossRefGoogle Scholar
  31. 31.
    Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089CrossRefGoogle Scholar
  32. 32.
    Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295CrossRefGoogle Scholar
  33. 33.
    Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229CrossRefGoogle Scholar
  34. 34.
    Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) Cross-modality bridging and knowledge transferring for image understanding. IEEE Trans Multimedia. Early AccessGoogle Scholar
  35. 35.
    Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) An effective Uyghur text detector for complex background images. IEEE Trans Multimedia. Early AccessGoogle Scholar
  36. 36.
    Yoo J, Ohm S, Chung M (2012) Maximum-entropy image enhancement using brightness mean and variance. Journal of Internet Computing and Services 13(3):61–73Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sahar Aboshosha
    • 1
    Email author
  • O. Zahran
    • 2
  • Moawad I. Dessouky
    • 2
  • F. E. Abd El-Samie
    • 2
  1. 1.Ministry of Electricity and Renewable EnergyCairoEgypt
  2. 2.Electronics and Electrical Communication Engineering Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufiaEgypt

Personalised recommendations