Multimedia Tools and Applications

, Volume 78, Issue 14, pp 20333–20360 | Cite as

A soft clustering technique with layered feature extraction for social image mining

  • Seema WazarkarEmail author
  • Bettahally N. Keshavamurthy


Social image mining is beneficial to accomplish tasks like event detection, suspicious activity detection, prediction of future trends, identification of mentally depressed people, etc. To carry out social image mining, data mining techniques need to be used. Clustering is one of the most important tasks of data mining which is able to deal with the unlabelled data. But, less number of clustering approaches are having ability to handle the uncertain image data. Thus, in this paper we proposed a soft clustering algorithm named as ROugh Mean Shift clustering (ROMS) with layered feature extraction model for social images. Effectiveness of the rough set theory and mean shift concepts are incorporated in this algorithm. It makes the ROMS to deal with the vagueness and the automatic determination of cluster numbers in given data. Proposed method is experimented on three datasets- synthetic, standard and real-world datasets and compared with existing techniques. Experimental results show that ROMS performs better as compared to other techniques.


Social image mining Feature extraction Rough set theory Mean shift clustering 



  1. 1.
    Aggarwal C (2011) An introduction to social network data analytics. Social network data analytics, Springer USGoogle Scholar
  2. 2.
    Aiazzi B, Alparone L, Baronti S, Garzelli A, Zoppetti C (2013) Nonparametric change detection in multitemporal SAR images based on mean-shift clustering. IEEE Trans Geosci Remote Sens 51(4):2022–2031CrossRefGoogle Scholar
  3. 3.
    Banerjee S, Kayal D (2016) Detection of hard exudates using mean shift and normalized cut method. Biocybernet Biomed Eng 36(4):679–685CrossRefGoogle Scholar
  4. 4.
    Bean C, Kambhampati C (2008) Autonomous clustering using rough set theory. Int J Autom Comput 5(1):90–102CrossRefGoogle Scholar
  5. 5.
    Chen G, Lerman G (2009) Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found Comput Math 9:517–558MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen H-p, Shen X-J, Long J-W (2016) Histogram-based colour image fuzzy clustering algorithm. Multimed Tools Appl 75(18):11417–11432CrossRefGoogle Scholar
  7. 7.
    Chen B, Yang Z, Huang S, Du X, Cui Z, Bhimani J, Xie X, Mi N (2017) Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. In proceedings of the IEEE 36th International Conference on Performance Computing and Communications (IPCCC) 1–6Google Scholar
  8. 8.
    Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799CrossRefGoogle Scholar
  9. 9.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  10. 10.
    Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 142–149Google Scholar
  11. 11.
    Ding M, Fan G (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Trans Cybernet 45(11):2413–2424CrossRefGoogle Scholar
  12. 12.
    Ding M, Fan G (2016) Articulated and generalized gaussian kernel correlation for human pose estimation. IEEE Trans Image Process 25(2):776–789MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duggan M, Ellison NB, Lampe C, Lenhart A, Madden M (2015) Frequency of social media use. Pew Research Center's Internet & American Life ProjectGoogle Scholar
  14. 14.
    Facebook Profiles (2016) <>; (accessed 16.23.09)
  15. 15.
    Fazayeli F, Wang L, Mandziuk J (2008) Feature selection based on the rough set theory and expectation-maximization clustering algorithm. In proceedings of the International Conference on Rough Sets and Current Trends in Computing. 272–282Google Scholar
  16. 16.
    Feng W, Yang Y, Wan L, Yu C (2016) Tone-mapped mean-shift based environment map sampling. IEEE Trans Vis Comput Graph 22(9):2187–2199CrossRefGoogle Scholar
  17. 17.
    Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gonzalez R, Woods R (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc, Upper Saddle RiverGoogle Scholar
  20. 20.
    Guellil I, Boukhalfa K (2015) Social big data mining: a survey focused on opinion mining and sentiments analysis. In proceedings of the 12th IEEE International Symposium on Programming and Systems (ISPS); 1–10Google Scholar
  21. 21.
    Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. 3rd Edition, Morgan Kaufmann publishersGoogle Scholar
  22. 22.
    Huiskes M, Lew M (2008) The MIR Flickr retrieval evaluation. In: Proceedings of the ACM international conference on multimedia information retrieval. Vancouver, CanadaGoogle Scholar
  23. 23.
    Jain A (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666CrossRefGoogle Scholar
  24. 24.
    Jiang S, Qian X, Mei T, Fu Y (2016) Personalized travel sequence recommendation on multi-source big social media. IEEE Trans Big Data 2(1):43–56CrossRefGoogle Scholar
  25. 25.
    Kaneko T, Yanai K (2016) Event photo mining from twitter using keyword bursts and image clustering. Neurocomputing:143–158Google Scholar
  26. 26.
    Keck MA Jr, Davis JW, Tyagi A (2006) Tracking mean shift clustered point clouds for 3d surveillance. In proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks. 187–194Google Scholar
  27. 27.
    Li M, Bao Z, Song L, Duh H (2016) Social-aware visualized exploration of tourist behaviours. In proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp). 289–292Google Scholar
  28. 28.
    Lin K-Y, Hsi-Peng L (2011) Why people use social networking sites: an empirical study integrating network externalities and motivation theory. Comput Hum Behav 27(3):1152–1161CrossRefGoogle Scholar
  29. 29.
    Lingras P (2002) Rough set clustering for web mining. In proceedings of the IEEE International Conference on Fuzzy Systems. 1039–1044Google Scholar
  30. 30.
    Lingras P (2007) Applications of rough set based k-means, Kohonen SOM, GA clustering. Transactions on rough sets, springer Berlin Heidelberg. 7: 120–139Google Scholar
  31. 31.
    Lingras P, Peters G (2012) Applying rough set concepts to clustering. Rough Sets: Selected Methods and Applications in Management and Engineering, Springer London. 23–37Google Scholar
  32. 32.
    Lingras P, West C (2004) Interval set clustering of web users with rough k-means. J Intel Inform Syst, Springer 23(1):5–16CrossRefzbMATHGoogle Scholar
  33. 33.
    Liu Y, Li SZ, Wu W, Huang R (2013) Dynamics of a mean-shift-like algorithm and its applications on clustering. Inf Process Lett 113(1):8–16MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Liu C, Zhang X, Li X, Li R, Zhang X, Chao W (2016) Multi-modal learning for social image classification. In proceedings of the 12th IEEE International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 1174–1179Google Scholar
  35. 35.
    Maji P, Pal S (2007) Rough set based generalized fuzzy-means algorithm and quantitative indices. IEEE Trans Syst, Man, Cybernet, Part B (Cybernetics) 37(6):1529–1540CrossRefGoogle Scholar
  36. 36.
    Maji P, Roy S (2015) Rough-fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl Soft Comput 30:705–721CrossRefGoogle Scholar
  37. 37.
    Manh NQ, Tuan ND, Sang DV, Binh HTT, Thuy NT (2015) Uniform detection in social image streams. In proceedings of the 7th IEEE International Conference on Knowledge and Systems Engineering (KSE). 180–185Google Scholar
  38. 38.
    Marin D, Tang M, Ayed IB, Boykov YY (2017) Kernel clustering: density biases and solutions. IEEE Transactions on Pattern Analysis and Machine IntelligenceGoogle Scholar
  39. 39.
    Pacheco F, Cerrada M, Sánchez R-V, Cabrera D, Li C, de Oliveira JV (2017) Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery. Expert Syst Appl 71:69–86CrossRefGoogle Scholar
  40. 40.
    Pal S, Mitra P (2002) Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans Geosci Remote Sens 40(11):2495–2501CrossRefGoogle Scholar
  41. 41.
    Parmar D, Wu T, Blackhurst J (2007) MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl Eng 63(3):879–893CrossRefGoogle Scholar
  42. 42.
    Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pawlak Z (1997) Rough set approach to knowledge-based decision support. Eur J Oper Res 99(1):48–57CrossRefzbMATHGoogle Scholar
  44. 44.
    Pawlak Z (2002) Rough set theory and its applications. J Telecomm Inform Technol:7–10Google Scholar
  45. 45.
    Pawlak Z (2012) Rough sets: theoretical aspects of reasoning about data. Springer Science & Business MediaGoogle Scholar
  46. 46.
    Perer A, Shneiderman B (2006) Balancing systematic and flexible exploration of social networks. IEEE Trans Vis Comput Graph 12(5):693–700CrossRefGoogle Scholar
  47. 47.
    Peters G, Crespo F, Lingras P, Weber R (2013) Soft clustering–fuzzy and rough approaches and their extensions and derivatives. Int J Approx Reason 54(2):307–322MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sarkar JP, Saha I, Maulik U (2016) Rough possibilistic type-2 fuzzy c-means clustering for MR brain image segmentation. Appl Soft Comput 46:527–536CrossRefGoogle Scholar
  49. 49.
    Seema Wazarkar BN (2018) Keshavamurthy, and Ahsan Hussain.: probabilistic classifier for fashion image grouping using multi-layer feature extraction model. Int J Web Serv Res 15(2):89–104CrossRefGoogle Scholar
  50. 50.
    Smarandache F (2005) A unifying field in logics: neutrsophic logic. neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. neutrosophy, neutrosophic set, neutrosophic probability. Infinite StudyGoogle Scholar
  51. 51.
    Steinhaus H (1956) Sur la division des corp materiels en parties. Bull Acad Polon Sci 1(804):801MathSciNetzbMATHGoogle Scholar
  52. 52.
    Theodoridis S, Koutroumbas K (2008) Pattern recognition. 4th Edition, Academic Press ElsevierGoogle Scholar
  53. 53.
    Unal Y, Polat K, Kocer E (2016) Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering. Measurement 77:278–291CrossRefGoogle Scholar
  54. 54.
    Unal Y, Polat K, Erdinc Kocer H Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering. Measurement 216 77:278–291Google Scholar
  55. 55.
    Viola P, Michael J (2004) Jones.: robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  56. 56.
    Wang F, Qi S, Gao G, Zhao S, Wang X (2016) Logo information recognition in large-scale social media data. Multimedia Systems 22(1):63–73CrossRefGoogle Scholar
  57. 57.
    Wazarkar S, Bettahally N (2018) Keshavamurthy.: Feature Extraction Model for Social Images. In proceedings of the Springer’s Conference on Smart Computing and Informatics 669–677Google Scholar
  58. 58.
    Wazarkar S, Bettahally N (2018) Keshavamurthy.: fashion image classification using matching points with linear convolution. Multimed Tools Appl:1–18Google Scholar
  59. 59.
    Xiao S, Tan M, Xu D, Dong ZY (2016) Robust kernel low-rank representation. IEEE Trans Neural Netw Learn Syst 27(11):2268–2281MathSciNetCrossRefGoogle Scholar
  60. 60.
    Xie X, Liu S, Yang C, Yang Z, Xu J, Zhai X (2017) The application of smart materials in tactile actuators for tactile information delivery. arXiv preprint arXiv:1708.07077Google Scholar
  61. 61.
    Yu B, Niu Z, Wang L (2013) Mean shift based clustering of neutrosophic domain for unsupervised constructions detection. Optik-Int J Light Elect Opt 124(21):4697–4706CrossRefGoogle Scholar
  62. 62.
    Zafarani R, Abbasi MA, Liu H (2014) Social media mining: an introduction. Cambridge University PressGoogle Scholar
  63. 63.
    Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118CrossRefGoogle Scholar
  64. 64.
    Zhao S, Yao H, Zhao S, Jiang X, Jiang X (2016) Multi-modal microblog classification via multi-task learning. Multimed Tools Appl 75(15):8921–8938CrossRefGoogle Scholar
  65. 65.
    Zhao S, Yao H, Gao Y, Ji R, Xie W, Jiang X, Chua T-S (2016) Predicting personalized emotion perceptions of social images. In proceedings of the ACM Conference on Multimedia. 1385–1394Google Scholar
  66. 66.
    Zhao S, Gao Y, Ding G, Chua T-S (2017) Real-Time Multimedia Social Event Detection in Microblog. IEEE Transactions on CyberneticsGoogle Scholar
  67. 67.
    Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645CrossRefGoogle Scholar
  68. 68.
    Zhu W, Lu J, Zhou J (2018) Nonlinear subspace clustering for image clustering. Pattern Recogn Lett 107:131–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Technology GoaPondaIndia

Personalised recommendations