Improved schemes for visual secret sharing based on random grids

  • Hao HuEmail author
  • Gang Shen
  • Yuling Liu
  • Zhengxin Fu
  • Bin Yu


Random grid (RG) is an alternative approach to realize a visual secret sharing (VSS) scheme. RG-based VSS has merits such as no pixel expansion and no tailor-made matrix requirement. Recently, many investigations on RG-based VSS are made. However, they need further improvements. In this paper, we obtain some improvements on RG-based VSS. Actually, two improved schemes are proposed, namely RG-based VSS for general access structure (GAS) with improved contrast and extended RG-based VSS with improved access structure. The first scheme can achieve better contrast than previous schemes. The second scheme reduces the chance of suspicion on secret image encryption by generating meaningful shares instead of noise-like shares in the first scheme, and improves the access structure from (k, k) to GAS while maintaining the property that the contrast of the recovered image is traded with that of share images by setting a certain parameter from small to large. Finally, theoretical analyses and experimental results are provided to demonstrate the effectiveness and advantages of the proposed schemes.


Secret image sharing Visual secret sharing Visual cryptography Random grid General access structure Meaningful share 



The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the Natural Science Foundation of China (Grant No. 61602513), the National Key Research and Development Program of China (Grant No. 2016YFF0204002, 2016YFF0204003), the Equipment Pre-research Foundation During the 13th Five-Year Plan Period (Grant No. 6140002020115), the CCF-Venus “Hongyan” Scientific Research Plan Foundation (Grant No. 2017003), the Outstanding Youth Foundation of Zhengzhou Information Science and Technology Institute (Grant No.2016611303), and the Science and technology leading talent project of Zhengzhou (Grant No. 131PLJRC644).


  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson D (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blundo C, De Santis A, Stinson D (1999) On the contrast in visual cryptography. J Cryptol 12:261–289MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chao H, Fan T (2017) Random-grid based progressive visual secret sharing scheme with adaptive priority. Digit Sign Process 68:69–80CrossRefGoogle Scholar
  4. 4.
    Chen Y (2017) Fully incrementing visual cryptography from a succinct non-monotonic structure. IEEE Trans Inform Foren Sec 12(5):1082–1091CrossRefGoogle Scholar
  5. 5.
    Chen T, Tsao K (2009) Visual secret sharing by random grids revisited. Pattern Recogn 42(9):2203–2217CrossRefGoogle Scholar
  6. 6.
    Chen T, Tsao K (2011) Threshold visual secret sharing by random grids. J Syst Softw 84:1197–1208CrossRefGoogle Scholar
  7. 7.
    Chen T, Tsao K (2011) User-friendly random-grid-based visual secret sharing. IEEE Trans Circ Syst Video Technol 21(11):1693–1703CrossRefGoogle Scholar
  8. 8.
    Cimato S., Prisco R., De Santis A.: Probabilistic visual cryptography schemes. Comput J 49, 97–107 (2006)CrossRefGoogle Scholar
  9. 9.
    D’Arco P, Prisco R, Desmedt Y (2016) Private visual share-homomorphic computation and randomness reduction in visual cryptography. Int Conf Inform Theor Sec: 95–113Google Scholar
  10. 10.
    De Prisco R, De Santis A (2014) On the relation of random grid and deterministic visual cryptography. IEEE Trans Inform Foren Sec 9(4):653–665CrossRefGoogle Scholar
  11. 11.
    Fu Z, Yu B (2013) Visual cryptography and random grids schemes. Digit-Foren Watermark: 109–122Google Scholar
  12. 12.
    Fu Z, Yu B (2014) Optimal pixel expansion of deterministic visual cryptography scheme. Multimed Tools Appl 73(3):1177–1193CrossRefGoogle Scholar
  13. 13.
    Guo T, Liu F, Wu C (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86:2094–2109CrossRefGoogle Scholar
  14. 14.
    Guo T, Liu F, Wu C (2014) k out of k extended visual cryptography scheme by random grids. Signal Process 94:90–101CrossRefGoogle Scholar
  15. 15.
    Horng G, Chen T, Tsai D (2006) Cheating in visual cryptography. Designs Codes Cryptograp 38(2):219–236MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hu H, Shen G, Fu Z, Wang J (2016) General construction for XOR-based visual cryptography and its extended capability. Multimed Tools Appl 75(21):1–29CrossRefGoogle Scholar
  17. 17.
    Ito R, Kuwakado H, Tanaka H (1999) Image size invariant visual cryptography. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2172–2177Google Scholar
  18. 18.
    Kafri O, Keren E (1987) Encryption of pictures and shapes by random grids. Opt Lett 12(6):377–379CrossRefGoogle Scholar
  19. 19.
    Liu F, Wu C (2011) Embedded extended visual cryptography schemes. IEEE Trans Inform Foren Sec 6(2):307–322CrossRefGoogle Scholar
  20. 20.
    Naor M, Shamir A (1995) Visual cryptography. Lect Notes Comput Sci 950(1):1–2MathSciNetzbMATHGoogle Scholar
  21. 21.
    Prisco R, Santis A (2013) Color visual cryptography schemes for black and white secret images. Theor Comput Sci 510(7):62–86MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ren Y, Liu F, Guo T, Feng R, Lin D (2017) Cheating prevention visual cryptography scheme using Latin square. IET Inf Secur 11(4):211–219CrossRefGoogle Scholar
  23. 23.
    Shen, G Liu F, Fu Z., Yu B (2016) Perfect contrast XOR-based visual cryptography schemes via linear algebra. Designs Codes Cryptogra: 1–23Google Scholar
  24. 24.
    Shivani S, Agarwal S (2016) Progressive visual cryptography with unexpanded meaningful shares. ACM transactions on multimedia computing. Commun Appl 12(4):1–24Google Scholar
  25. 25.
    Shyu S (2006) Efficient visual secret sharing scheme for color images. Pattern Recogn 39(5):866–880CrossRefGoogle Scholar
  26. 26.
    Shyu S (2007) Image encryption by random grids. Pattern Recogn 40(3):1014–1031CrossRefGoogle Scholar
  27. 27.
    Shyu S (2009) Image encryption by multiple random grids. Pattern Recogn 42(7):1582–1596CrossRefGoogle Scholar
  28. 28.
    Shyu S (2013) Visual cryptograms of random grids for general access structures. IEEE Trans Circ Syst Video Technol 23(3):414–424CrossRefGoogle Scholar
  29. 29.
    Wu X, Sun W (2012) Random grid-based visual secret sharing for general access structures with cheat-preventing ability. J Syst Softw 85(5):1119–1134CrossRefGoogle Scholar
  30. 30.
    Wu X, Sun W (2012) Visual secret sharing for general access structures by random grids. IET Inf Secur 6(4):299–309CrossRefGoogle Scholar
  31. 31.
    Wu X, Sun W (2013) Improving the visual quality of random grid-based visual secret sharing. Signal Process 93(5):977–995CrossRefGoogle Scholar
  32. 32.
    Wu X, Sun W (2014) Generalized random grid and its applications in visual cryptography. IEEE Trans Inform Foren Sec 8(9):1541–1553CrossRefGoogle Scholar
  33. 33.
    Yan X, Lu Y (2016) Participants increasing for threshold random grids-based visual secret sharing. J Real-Time Image Proc:1–12Google Scholar
  34. 34.
    Yan X, Liu Y, Huang H, Liu L, Wang S (2017) Quality-adaptive threshold visual secret sharing by random grids. IEEE Int Conf Signal Image Process.
  35. 35.
    Yang C (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25(4):481–494MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang C, Wu C, Wang D (2014) A discussion on the relationship between probabilistic visual cryptography and random grid. Inf Sci 278:141–173MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yu B, Shen G (2014) Multi-secret visual cryptography with deterministic contrast. Multimed Tools Appl 72(2):1867–1886MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhengzhou Information Science and Technology InstituteZhengzhouChina
  2. 2.Trusted Computing and Information Assurance Laboratory, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations