Advertisement

Reversible data hiding with interpolation and adaptive embedding

  • Md Abdul Wahed
  • Hussain Nyeem
Article
  • 17 Downloads

Abstract

Interpolation based reversible data hiding (IRDH) schemes have recently been studied for better rate-distortion performance. However, most of them do not have any consideration of an ‘effective’ capacity management for increasing size of payload. In this paper, we develop and present an IRDH scheme with adaptive embedding, which determines how many bits of an interpolated pixel can be used for the best possible embedded image quality by using a parameter to control the embedding rate. While compared with the prominent IRDH schemes, our scheme demonstrated its efficiency for better embedding rate distortion performance. Being up-sampled, the embedded image would have higher spatial resolution. It also does not require any location map, and thus the total capacity can be effectively used for data embedding. Moreover, it keeps the original pixels untouched and thus, would be useful in military and medical image applications that restrict minimum possible changes in the cover images.

Keywords

Adaptive embedding Interpolation Reversible embedding Data hiding Digital watermarking 

Notes

References

  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13:1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold M, Schmucker M, Wolthusen SD (2003) Techniques and applications of digital watermarking and content protection. Artech House, BostonGoogle Scholar
  3. 3.
    Barton JM (1997) Method and apparatus for embedding authentication information within digital data. US Patent 5,646,997Google Scholar
  4. 4.
    Bender W, Butera W, Gruhl D, Hwang R, Paiz FJ, Pogreb S (2000) Applications for data hiding. IBM Syst J 39(3.4):547–568CrossRefGoogle Scholar
  5. 5.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  6. 6.
    Chang YT, Huang CT, Lee CF, Wang SJ (2013) Image interpolating based data hiding in conjunction with pixel-shifting of histogram. J Supercomput 66 (2):1093–1110CrossRefGoogle Scholar
  7. 7.
    Chen X, Li X, Yang B, Tang Y (2010) Reversible image watermarking based on a generalized integer transform. In: Proceedings of ICASSP, pp 2382–2385. IEEEGoogle Scholar
  8. 8.
    Chen X, Sun X, Sun H, Xiang L, Yang B (2015) Histogram shifting based reversible data hiding method using directed-prediction scheme. Multimed Tools Appl 74(15):5747–5765CrossRefGoogle Scholar
  9. 9.
    Coatrieux G, Lecornu L, Sankur B, Roux C (2006) A review of image watermarking applications in healthcare. In: Proceedings of IEEE EMBS’06, pp 4691–4694. IEEEGoogle Scholar
  10. 10.
    Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258CrossRefGoogle Scholar
  11. 11.
    Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T (2008) Models of watermarking. In: Digital watermarking and steganography. 2nd edn. Morgan Kaufmann, Burlington, pp 61–103CrossRefGoogle Scholar
  12. 12.
    DWA (2006) Digital watermarking alliance (DWA). http://digitalwatermarkingalliance.org/digital-watermarking-applications/. [Online; last accessed: Jan 2017]
  13. 13.
    Fallahpour M, Megias D, Ghanbari M (2011) Subjectively adapted high capacity lossless image data hiding based on prediction errors. Multimed Tools Appl 52(2-3):513–527CrossRefGoogle Scholar
  14. 14.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. EURASIP Journal on Applied Signal Processing pp 185–196Google Scholar
  15. 15.
    Jung KH, Yoo KY (2009) Data hiding method using image interpolation. Comput Standards & Interfaces 31(2):465–470CrossRefGoogle Scholar
  16. 16.
    Jung KH, Yoo KY (2015) Steganographic method based on interpolation and lsb substitution of digital images. Multimed Tools Appl 74(6):2143–2155CrossRefGoogle Scholar
  17. 17.
    Kundur D, Hatzinakos D (1999) Digital watermarking for telltale tamper proofing and authentication. Proc IEEE 87(7):1167–1180CrossRefGoogle Scholar
  18. 18.
    Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl 39(8):6712–6719CrossRefGoogle Scholar
  19. 19.
    Lee Y, Kim H, Park Y (2009) A new data hiding scheme for binary image authentication with small image distortion. Inform Sci 179(22):3866–3884CrossRefGoogle Scholar
  20. 20.
    Liu YC, Wu HC, Yu SS (2011) Adaptive de-based reversible steganographic technique using bilinear interpolation and simplified location map. Multimed Tools Appl 52(2-3):263–276CrossRefGoogle Scholar
  21. 21.
    Lu TC, Chang CC, Huang YH (2014) High capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting. Multimed Tools Appl 72(1):417–435CrossRefGoogle Scholar
  22. 22.
    Ma X, Pan Z, Hu S, Wang L (2015) High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism. J Vis Commun Image Represent 28:71–82CrossRefGoogle Scholar
  23. 23.
    Malik A, Sikka G, Verma HK (2016) An image interpolation based reversible data hiding scheme using pixel value adjusting feature. Multimed Tools Appl 76:1–22Google Scholar
  24. 24.
    Malik A, Sikka G, Verma HK (2017) Image interpolation based high capacity reversible data hiding scheme. Multimed Tools Appl 76:1–17CrossRefGoogle Scholar
  25. 25.
    Nyeem H, Boles W, Boyd C (2013) A review of medical image watermarking requirements for teleradiology. J Dig Imaging 26:326–343CrossRefGoogle Scholar
  26. 26.
    Nyeem H, Boles W, Boyd C (2014) Digital image watermarking: its formal model, fundamental properties and possible attacks. EURASIP J Adv Signal Process 2014(1):135CrossRefGoogle Scholar
  27. 27.
    Ou B, Li X, Wang J (2016) High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion. J Vis Commun Image Represent 39:12–23CrossRefGoogle Scholar
  28. 28.
    Pan Z, Hu S, Ma X, Wang L (2015) Reversible data hiding based on local histogram shifting with multilayer embedding. J Vis Commun Image Represent 31:64–74CrossRefGoogle Scholar
  29. 29.
    Parah SA, Ahad F, Sheikh JA, Loan NA, Bhat GM (2017) A new reversible and high capacity data hiding technique for e-healthcare applications. Multimed Tools Appl 76(3):3943–3975CrossRefGoogle Scholar
  30. 30.
    Rey C, Dugelay JL (2002) A survey of watermarking algorithms for image authentication. Eurasip J Appl Signal Process 2002(1):613–621zbMATHGoogle Scholar
  31. 31.
    Rhoads GB (2000) Signal processing to hide plural-bit information in image, video, and audio data. US Patent 6,122,392Google Scholar
  32. 32.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19:989–999CrossRefGoogle Scholar
  33. 33.
    Singh AK (2017) Improved hybrid algorithm for robust and imperceptible multiple watermarking using digital images. Multimed Tools Appl 76(6):8881–8900CrossRefGoogle Scholar
  34. 34.
    Tewfik AH, Swanson M (1997) Data hiding for multimedia personalization, interaction, and protection. IEEE Signal Process Mag 14(4):41–44CrossRefGoogle Scholar
  35. 35.
    Thodi DM, Rodríguez J (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16:721–730MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896CrossRefGoogle Scholar
  37. 37.
    USC SIPI image database. http://sipi.usc.edu/database/ (SIPI). [Online; last accessed 23-Mar-2017]
  38. 38.
    Voyatzis G, Pitas I (1999) The use of watermarks in the protection of digital multimedia products. Proc IEEE 87(7):1197–1207CrossRefGoogle Scholar
  39. 39.
    Wahed MA, Nyeem H (2016) Developing a block-wise interpolation based adaptive data embedding scheme. In: Proceedings of ICEEICT 2016, pp 1–6. IEEEGoogle Scholar
  40. 40.
    Wang CT, Yu HF (2012) High-capacity reversible data hiding based on multi-histogram modification. Multimed Tools Appl 61(2):299–319MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wang XT, Chang CC, Nguyen TS, Li MC (2013) Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Process 23(2):569–577MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612CrossRefGoogle Scholar
  43. 43.
    Wu M, Liu B (2004) Data hiding in binary image for authentication and annotation. IEEE Trans Multimed 6(4):528–538CrossRefGoogle Scholar
  44. 44.
    Yu HH, Wu M, Li X, Gelman AD (2002) Methods and apparatus for multi-layer data hiding. US Patent 6,456,726Google Scholar
  45. 45.
    Zhang X, Sun Z, Tang Z, Yu C, Wang X (2017) High capacity data hiding based on interpolated image. Multimed Tools Appl:1–24Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and Communication EngineeringMilitary Institute of Science and Technology (MIST)DhakaBangladesh

Personalised recommendations