Multimedia Tools and Applications

, Volume 78, Issue 6, pp 7819–7839 | Cite as

Fast CU size decision and PU mode decision algorithm for quality SHVC inter coding

  • Qiang Li
  • Bo LiuEmail author
  • Dayong Wang


As a scalable extension of the High Efficiency Video Coding (HEVC), the Scalable High Efficiency Video Coding (SHVC) encoder needs to encode multiple HEVC layers with Inter-layer predictions, which causes the significant increase in coding complexity. In this paper, we proposed a novel Inter prediction scheme to effectively reduce computational complexity in Quality SHVC. The new features of the proposed algorithm include: First, spatial and Inter-layer depth correlations are used to predict the most possible coding unit (CU) depth level candidates. Second, a statistical test method on the current CU depth level is introduced to examine whether the residual coefficients within its block present similar distribution to terminate depth selection early. Finally, during Inter prediction selection from 8 Prediction Unit (PU) sizes, spatial and Inter-layer correlations are combined with residual coefficients distribution to determine the PU partitioning mode is Symmetric Motion Partitioning (SMP) or Asymmetric Motion Partitioning (AMP). Experimental results demonstrate that the proposed algorithm can save an average of 65.33% coding time of enhancement layer (EL) while achieving a better rate distortion (RD) performance over other state-of-the-art work.


SHVC CU size decision PU mode decision Inter prediction Low complexity compression 



This work is supported by the National Natural Science Foundation of China (No. 61571071) and Nature Science Foundation Project of Chongqing (No. cstc2016jcyjA0543 and No. cstc2017jcyjXB0037). The authors also would like to thank all reviewers for their valuable comments and suggestions to improve the quality of this paper.


  1. 1.
    Bailleul R, De Cock J, Van De Walle R (2014) Fast mode decision for SNR scalability in SHVC digest of technical papers. In: 2014 IEEE International Conference on consumer electronics (ICCE). IEEE, pp 193–194Google Scholar
  2. 2.
    Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves. In: ITU-T Q. 6/SG16 VCEG, 15th Meeting, Austin, Texas, USA, April, 2001Google Scholar
  3. 3.
    Bossen F (2011) Common test conditions and software reference configurations. In: Joint Collaborative team on video coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 5th meeting Jan. 2011Google Scholar
  4. 4.
    Boyce JM, Ye Y, Chen J, Ramasubramonian AK (2016) Overview of SHVC: scalable extensions of the high efficiency video coding standard. IEEE Trans Circ Syst Vid Technol 26(1):20–34CrossRefGoogle Scholar
  5. 5.
    Chen B, Yang Z, Huang S, et al. (2017) Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. In: 2017 IEEE 36th International on performance computing and communications conference (IPCCC). IEEE, pp 1–6Google Scholar
  6. 6.
    Cho S, Kim M (2013) Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Trans Circ Syst Vid Technol 23(9):1555–1564CrossRefGoogle Scholar
  7. 7.
    Corrêa G, Assuncao P, Agostini L, da Silva Cruz LA (2012) Performance and computational complexity assessment of high-efficiency video encoders. IEEE Trans Circ Syst Vid Technol 22(12):1899–1909CrossRefGoogle Scholar
  8. 8.
    Cui J, Liu Y, Xu Y, et al. (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43 (4):996–1002CrossRefGoogle Scholar
  9. 9.
    Hu N, Yang E-H (2014) Fast motion estimation based on confidence interval. IEEE Trans Circ Syst Vid Technol 24(8):1310–1322CrossRefGoogle Scholar
  10. 10.
    Kailath T (1967) The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans Commun Technol 15(1):52–60CrossRefGoogle Scholar
  11. 11.
    Kang M, Ma R, Li Z, Hu X, An P (2016) Fast mode decision algorithm for quality scalable HEVC. In: International forum of digital TV and wireless multimedia communication. Springer, pp 349–357Google Scholar
  12. 12.
    Katayama T, Shi W, Song T, Shimamoto T (2016) Early depth determination algorithm for enhancement layer intra coding of SHVC. In: 2016 Region 10 Conference (TENCON). IEEE, pp 3079–3082Google Scholar
  13. 13.
    Li X, Chen M, Qu Z, Xiao J, Gabbouj M (2017) An effective CU size decision method for quality scalability in SHVC. Multimed Tools Appl 76(6):8011–8030CrossRefGoogle Scholar
  14. 14.
    Lim K, Lee J, Kim S, Lee S (2015) Fast PU skip and split termination algorithm for HEVC intra prediction. IEEE Trans Circ Syst Video Technol 25(8):1335–1346CrossRefGoogle Scholar
  15. 15.
    Liu Y, Nie L, Han L, et al. (2015) Action2activity: recognizing complex activities from sensor data. In: IJCAI 2015, vol 2015, pp 1617–1623Google Scholar
  16. 16.
    Liu Y, Nie L, Liu L, et al. (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhang L, Nie L, et al. (2016) Fortune teller: predicting your career path. In AAAI 2016, vol 2016, pp 201–207Google Scholar
  18. 18.
    Liu Y, Zheng Y, Liang Y, et al. (2016) Urban water quality prediction based on multi-task multi-view learningGoogle Scholar
  19. 19.
    Min B, Cheung RCC (2015) A fast CU size decision algorithm for the HEVC intra encoder. IEEE Trans Circ Syst Vid Technol 25(5):892–896CrossRefGoogle Scholar
  20. 20.
    Pan Z, Kwong S, Sun M-T, Lei J (2014) Early MERGE mode decision based on motion estimation and hierarchical depth correlation for HEVC. IEEE Trans BroadCasting 60(2):405–412CrossRefGoogle Scholar
  21. 21.
    Seregin V, He Y (2014) Common SHM test conditions and software reference configurations. Document JCTVCQ1009, pp 1–4Google Scholar
  22. 22.
    Shen L, Zhang Z, An P (2013) Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans Consum Electron 59(1):207–213CrossRefGoogle Scholar
  23. 23.
    Shen L, Zhang Z, Liu Z (2014) Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Trans Circ Syst Vid Technol 24(10):1709–1722CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Sullivan GJ, Ohm J-R (2012) Joint call for proposals on scalable video coding extensions of high efficiency video coding (HEVC). ITU-T Study Group 16Google Scholar
  26. 26.
    Sullivan GJ, Ohm J, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Vid Technol 22 (12):1649–1668CrossRefGoogle Scholar
  27. 27.
    Sullivan GJ, Boyce JM, Chen Y, Ohm J-R, Segall CA, Vetro A (2013) Standardized extensions of high efficiency video coding (HEVC). IEEE J Select Topics Signal Process 7(6):1001–1016CrossRefGoogle Scholar
  28. 28.
    Sze V, Budagavi M, Sullivan GJ (2014) High efficiency video coding (HEVC). Integr Circ Syst Algor Architect, 1–375Google Scholar
  29. 29.
    Tai K-H, Hsieh M-Y, Chen M-J, Chen C-Y, Yeh C-H (2017) A fast HEVC encoding method using depth information of collocated CUs and RD cost characteristics of PU modes. IEEE Transactions on BroadcastingGoogle Scholar
  30. 30.
    Tang M, Chen X, Gu J, Han Y, Wen J, Yang SQ (2017) Accelerating HEVC encoding using early-split. IEEE Signal Processing LettersGoogle Scholar
  31. 31.
    Tohidypour HR, Pourazad MT, Nasiopoulos P (2013) Content adaptive complexity reduction scheme for quality/fidelity scalable HEVC. In: 2013 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1744–1748Google Scholar
  32. 32.
    Tohidypour HR, Pourazad MT, Nasiopoulos P (2016) An encoder complexity reduction scheme for quality/fidelity scalable HEVC. IEEE Trans Broadcast 62(3):664–674CrossRefGoogle Scholar
  33. 33.
    Tohidypour HR, Pourazad MT, Nasiopoulos P (2016) Probabilistic approach for predicting the size of coding units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans Multimed 18(2):182–195CrossRefGoogle Scholar
  34. 34.
    Tohidypour HR, Bashashati H, Pourazad MT, Nasiopoulos P (2017) Online-learning-based mode prediction method for quality scalable extension of the high efficiency video coding (hevc) standard. IEEE Trans Circ Syst Vid Technol 27 (10):2204–2215CrossRefGoogle Scholar
  35. 35.
    Vanne J, Viitanen M, Hämäläinen TD (2014) Efficient mode decision schemes for HEVC inter prediction. IEEE Trans Circ Syst Vid Technol 24(9):1579–1593CrossRefGoogle Scholar
  36. 36.
    Wang D, Zhu C, Sun Y, Dufaux F, Huang Y (2017) Efficient multi-strategy intra prediction for quality scalable high efficiency video coding. IEEE Transactions on Image ProcessingGoogle Scholar
  37. 37.
    Wien M (2015) High efficiency video coding. Coding Tools and SpecificationGoogle Scholar
  38. 38.
    Yan S, Hong L, He W, Wang Q (2012) Group-based fast mode decision algorithm for intra prediction in HEVC. In: 2012 Eighth International conference on signal image technology and internet based systems (SITIS). IEEE, pp 225–229Google Scholar
  39. 39.
    Yang Z, Bhimani J, Wang J, et al. (2017) Automatic and scalable data replication manager in distributed computation and storage infrastructure of cyber-physical systems. J Scalable Comput Special Issue Commun Comput Network Cyber-Phys Syst, 18(4)Google Scholar
  40. 40.
    Yang Z, Hoseinzadeh M, Andrews A, et al. (2017) AutoTiering: automatic data placement manager in multi-tier all-flash datacenter. In: 36th IEEE International performance computing and communications conference. IEEEGoogle Scholar
  41. 41.
    Zhang H, Ma Z (2014) Fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans Circ Syst Video Technol 24(4):660–668CrossRefGoogle Scholar
  42. 42.
    Zhao W, Onoye T, Song T (2015) Hierarchical structure-based fast mode decision for h.265/HEVC. IEEE Trans Circ Syst Vid Technol 25(10):1651–1664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Signal and Information ProcessingChongqing University of Posts and TelecommunicationChongqingChina

Personalised recommendations