Advertisement

Adaptive multi-view video streaming using side information over peer-to-peer networks

  • Cagri Ozcinar
  • Erhan Ekmekcioglu
  • Gholamreza Anbarjafari
  • Ahmet Kondoz
Article
  • 110 Downloads

Abstract

Multi-view plus-depth-map (MVD) video streaming with autostereoscopic displays provides multi-user immersive media experiences. In this context, delivery of MVD representation to multiple clients remains a challenging problem because of the high-volume of data involved and the inherent limitations imposed by the delivery networks. To this end, this paper investigates the side information (SI) assisted adaptation algorithm using peer-to-peer (P2P) systems. P2P delivery systems for MVD video can maximize link utilization, preventing the transport of multiple video copies of the same packet for many users. However, the quality of experience (QoE) can be significantly degraded by dynamic variations caused by network congestions. To this end, our solution comprises the extraction of low-overhead metadata at the encoding server that is distributed through the P2P network as SI and used by P2P clients performing network adaptation. In the proposed adaptation strategy, pre-selected views are discarded at times of network congestion and reconstructed with an optimal reconstruction performance using the delivered SI and the delivered neighboring camera views. The experimental results show that the robustness of P2P multi-view streaming using the proposed adaptation scheme is significantly increased in the P2P network.

Keywords

Multi-view plus-depth-map (MVD) Peer-to-peer (P2P) Compression Adaptation Streaming 

Notes

References

  1. 1.
    Boyce JM, Ye Y, Chen J, Ramasubramonian AK (2016) Overview of shvc: scalable extensions of the high efficiency video coding standard. IEEE Trans Circ Syst Video Technol 26(1):20–34CrossRefGoogle Scholar
  2. 2.
    Castellanos WE, Guerri JC, Arce P (2017) Svceval-ra: an evaluation framework for adaptive scalable video streaming. Multimed Tools Appl 76(1):437–461CrossRefGoogle Scholar
  3. 3.
    Chen Z, Sun L, Yang S (2010) Overcoming view switching dynamic in multi-view video streaming over P2P network. In: 2010 3DTV-conference: The True Vision-Capture, Transmission and Display of 3d Video (3dtv-con). IEEE, pp 1–4Google Scholar
  4. 4.
    De Abreu A, Frossard P, Pereira F (2015) Optimizing multiview video plus depth prediction structures for interactive multiview video streaming. IEEE J Sel Top Signal Process 9(3):487–500CrossRefGoogle Scholar
  5. 5.
    Ekmekcioglu E, Gurler CG, Kondoz A, Tekalp AM (2017) Adaptive multiview video delivery using hybrid networking. IEEE Trans Circ Syst Video Technol 27(6):1313–1325CrossRefGoogle Scholar
  6. 6.
    Erċelebi E, et al. (2017) A new teleconference system with a fast technique in hevc coding. Multimed Tools Appl 76(2):1775–1800CrossRefGoogle Scholar
  7. 7.
    Fehn C (2004) Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV, vol 5291. [Online]. Available:  https://doi.org/10.1117/12.524762
  8. 8.
    Gurler CG, Gorkemli B, Saygili G, Tekalp AM (2011) Flexible transport of 3-d video over networks. Proc IEEE 99(4):694–707CrossRefGoogle Scholar
  9. 9.
    Gurler CG, Savas SS, Tekalp AM Quality of experience aware adaptation strategies for multi-view video over P2P networks. In: 2012 19th IEEE International Conference on image processing (ICIP). IEEE, pp 2289–2292Google Scholar
  10. 10.
    Gürler CG, Tekalp M (2013) Peer-to-peer system design for adaptive 3d video streaming. IEEE Commun Mag 51(5):108–114CrossRefGoogle Scholar
  11. 11.
    Habib A, Chuang J (2006) Service differentiated peer selection: an incentive mechanism for peer-to-peer media streaming. IEEE Trans Multimed 8(3):610–621CrossRefGoogle Scholar
  12. 12.
    Hu S-Y, Huang T-H, Chang S-C, Sung W-L, Jiang J-R, Chen B-Y (2008) Flod: A framework for peer-to-peer 3d streaming. In: Ieee INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp 1373–1381Google Scholar
  13. 13.
    Jacobson V Congestion avoidance and control. In: ACM SIGCOMM Computer Communication Review. ACM, vol 18, pp 314–329Google Scholar
  14. 14.
    Karakaya M, Korpeoglu I, Ulusoy Ö (2009) Free riding in peer-to-peer networks. IEEE Internet Comput 13(2):92–98CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim W-S, Ortega A, Lai P, Tian D, Gomila C (2009) Depth map distortion analysis for view rendering and depth coding. In: 16th IEEE International Conference on Image Processing (ICIP), pp 721–724Google Scholar
  16. 16.
    Kurutepe E, Sikora T (2008) Feasibility of multi-view video streaming over P2P networks. In: 2008 3DTV Conference: The True Vision-Capture, Transmission and Display of 3d Video. IEEE, pp 157–160Google Scholar
  17. 17.
    Liu Z, Shen Y, Ross K, Panwar S, Wang Y (2009) LayerP2P: Using layered video chunks in P2P live streaming. IEEE Trans Multimed 11(7):1340–1352CrossRefGoogle Scholar
  18. 18.
    Maugey T, Frossard P (2013) Interactive multiview video system with low complexity 2d look around at decoder. IEEE Trans Multimed (5):1070–1082Google Scholar
  19. 19.
    Merkle P, Morvan Y, Smolic A, Farin D, Mueller K, de With P, Wiegand T (2009) The effects of multiview depth video compression on multiview rendering. Signal Process Image Commun 24(1):73–88CrossRefGoogle Scholar
  20. 20.
    Merkle P, Müller K, Wiegand T (2010) 3d video: acquisition, coding, and display. IEEE Trans Consum Electron 56(2):946–950CrossRefGoogle Scholar
  21. 21.
    Miller K, Quacchio E, Gennari G, Wolisz A Adaptation algorithm for adaptive streaming over http, 2012 19th International Packet Video Workshop (pv), pp 173–178, may 2012. [online]. available: http://IEEExplore.IEEE.org/lpdocs/epic03/wrapper.htm?arnumber=6229732
  22. 22.
    Morvan Y, Farin D, de With P Depth-image compression based on an rd optimized quadtree decomposition for the transmission of multiview images. In: 2007. ICIP 2007. IEEE International Conference on Image Processing. IEEE, vol 5, pp v–105Google Scholar
  23. 23.
    Müller K, Smolic A, Dix K, Merkle P, Wiegand T (2009) Coding and intermediate view synthesis of multiview video plus depth. In: 2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, pp 741–744Google Scholar
  24. 24.
    Ozcinar C Adaptive 3d multi-view video streaming over P2P networks. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, pp 2462–2466Google Scholar
  25. 25.
    Ozcinar C, Anbarjafari G (2017) Dynamic bitrate allocation of interactive real-time streamed multi-view video with view-switch prediction. Signal, Image and Video Process 11(7):1279–1285Google Scholar
  26. 26.
    Ozcinar C, Ekmekcioglu E, Ćalić J, Kondoz A (2016) Adaptive delivery of immersive 3d multi-view video over the internet. Multimed Tools Appl 75(20):12 431–12 461CrossRefGoogle Scholar
  27. 27.
    Ozcinar C, Ekmekcioglu E, Kondoz A (2013) Dynamic adaptive 3d multi-view video streaming over the internet. In: Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences. ACM, pp 51–56Google Scholar
  28. 28.
    Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv (CSUR) 16(2):187–260MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the h. 264/avc standard. IEEE Trans Circ Syst Video Technol 17 (9):1103–1120CrossRefGoogle Scholar
  30. 30.
    Sodagar I (2011) The mpeg-dash standard for multimedia streaming over the internet. IEEE MultiMed 18(4):62–67CrossRefGoogle Scholar
  31. 31.
    Sugiyama Y (1986) An algorithm for solving discrete-time W,iener-Hopf equations based upon Euclid’s algorithm. IEEE Trans Inf Theory 32(3):394–409CrossRefzbMATHGoogle Scholar
  32. 32.
    Tanimoto M, Senoh T, Naito S, Shimizu S, Horimai H, Domański M, Vetro A, Preda M, Mueller K (2013) Proposal on a new activity for the third phase of ftv. In: The 105th Meeting of MPEG, no MPEG2011/n12036Google Scholar
  33. 33.
    Yun D, Chung K (2017) Dash-based multi-view video streaming system. IEEE Transactions on Circuits and Systems for Video Technology:1–1. (Early Access)Google Scholar
  34. 34.
    Zhang X, Toni L, Frossard P, Zhao Y, Lin C (2018) Adaptive streaming in interactive multiview video systems. IEEE Trans Circ Syst Video Technol PP(99):1–1Google Scholar
  35. 35.
    Zhou Y, Hou C, Jin Z, Yang L, Yang J, Guo J (2009) Real-time transmission of high-resolution multi-view stereo video over ip networks. In: 2009 3DTV Conference: The True Vision-Capture, Transmission and Display of 3d Video. IEEE, pp 1–4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cagri Ozcinar
    • 1
  • Erhan Ekmekcioglu
    • 2
  • Gholamreza Anbarjafari
    • 3
    • 4
  • Ahmet Kondoz
    • 2
  1. 1.Trinity College Dublin (TCD)Dublin 2Ireland
  2. 2.Institute for Digital TechnologiesLoughborough University LondonLondonUK
  3. 3.iCV Research GroupUniversity of TartuTartuEstonia
  4. 4.Department of Electrical and Electronic EngineeringHasan Kalyoncu UniversityGaziantepTurkey

Personalised recommendations