Robust Boolean operations algorithm on regularized triangular mesh and implementation

  • Hongjuan Wang
  • Shuting Kan
  • Xingli Zhang
  • Xinming Lu
  • Longquan Zhou


Boolean operations are an essential tool for creating complex entities in many fields. In order to implement complex entity modeling, we proposed a method based on robust Boolean operations that focused on the robustness of geometric calculations caused by computational errors and data error. This method used a uniform logical judgment to analyze the specific conditions of the intersection of vertices or edges in advance, and avoided the inconsistency between logical judgment results and geometric relations. We correspondingly obtained the positions of the two triangles, the validity of the intersection and the intersection edges from tetrahedral-volume calculations, the triangle-area calculations, and the topology information to mark the triangles instead of intersecting lines tracking and the judgment of the triangles inside the entities. Finally, the experimental results indicate that this method realized the three-dimensional modeling of any complex geological body.


Boolean operations Intersection computation Subdivision and mark 3D geological modeling 



The author(s) discloses the following financial support for the research, authorship, and/or publication of this article: This paper is supported by the National Key Research and Development Program of China (2016YFC0801406), Shandong Province Key Research and Development Plan Project(2016GSF120012), Shandong Key Research and Development program (2018GGX109013), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (2016RCJJ033).


  1. 1.
    Aghdaii N, Younesy H, Hao Z (2012) 5c6c7 meshes: remeshing and analysis. Comput Graph 36(8):1072–1083CrossRefGoogle Scholar
  2. 2.
    Aibo GK, Lichao Z, Congjun W, Shuhuai H (2006) Implementation of Boolean operations on stl models. J Huazho Univ Sci Tech (Nat Sci Edn) 34(7):96–99Google Scholar
  3. 3.
    Arruda MCD, Lira WWM, Martha LF (2012) Boolean operations on multi-region solids for mesh generation. Eng Comput 28(3):225–239CrossRefGoogle Scholar
  4. 4.
    Attene M (2014) Direct repair of self-intersecting meshes. Graph Model 76 (6):658–668CrossRefGoogle Scholar
  5. 5.
    Dianzhu S, Xincheng L, Zhongchao T, Yanrui L (2009) Accelerated Boolean operations on triangular mesh models based on dynamic spatial indexing. J Comput-Aided Des Comput Graph 21(9):1232–1237Google Scholar
  6. 6.
    Du Q, Wang D (2006) Recent progress in robust and quality delaunay mesh generation. J Comput Appl Math 195(1):8–23MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feito FR, Ogayar CJ, Segura RJ, Rivero ML (2013) Fast and accurate evaluation of regularized Boolean operations on triangulated solids. CAD Comput Aided Des 45(3):705–716CrossRefGoogle Scholar
  8. 8.
    Ferley E, Cani MP, Gascuel JD (2000) Practical volumetric sculpting. Vis Comput 16(8):469–480CrossRefzbMATHGoogle Scholar
  9. 9.
    Frisken SF, Perry RN, Rockwood AP, Jones TR (2000) Adaptively sampled distance fields: a general representation of shape for computer graphics, pp 249–254Google Scholar
  10. 10.
    Guocan W, Yixian X, Xujun C, Jisheng G, Junjian Y, Yiming G, Long X, Xiuguo L, Weihua H (2015) Three-dimensional geological mapping and visualization of complex orogenic belt. Earth Sci-J Chin Univ Geosci 40(3):397–406Google Scholar
  11. 11.
    Hichem B, Guennebaud G, Sebti F (2015) Exact, robust, and efficient regularized Booleans on general 3d meshes. Comput Math Appl 70(6):1235–1254MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jessell M, Aillres L, Kemp ED, Lindsay M, Wellmann F, Hillier M, Laurent G, Carmichael T, Martin R (2016) Next generation three-dimensional geologic modeling and inversion. Soc Econ Geol Spec Publ 18:261–272Google Scholar
  13. 13.
    Karamete BK, Dey S, Mestreau EL, Aubry R, Bulat-Jara FA (2013) An algorithm for discrete Booleans with applications to finite element modeling of complex systems. Finite Elem Anal Des 68(88):10–27CrossRefGoogle Scholar
  14. 14.
    Krishnan S, Manocha D, Gopi M, Culver T, Keyser J (2001) Boole: a boundary evaluation system for Boolean combinations of sculptured solids. Int J Comput Geom Appl 11(01):105–144CrossRefzbMATHGoogle Scholar
  15. 15.
    Landier S (2017) Boolean operations on arbitrary polygonal and polyhedral meshes. Comput Aided Des 85:138–153CrossRefGoogle Scholar
  16. 16.
    Li J, Wang W (2017) Fast and robust gpu-based point-in-polyhedron determination. Comput Aided Des 87:20–28CrossRefGoogle Scholar
  17. 17.
    Li Y, Zhang E, Kobayashi Y, Wonka P (2010) Editing operations for irregular vertices in triangle meshes. Acm Trans Graph 29(6):1–12Google Scholar
  18. 18.
    Lin B, Liguan W, Jianhong C, Xinlong F (2008) Spacial Boolean operations of3d mesh model. J Huazhong Univ Sci Tech (Nat Sci Edn) 36(5):82–85Google Scholar
  19. 19.
    Lo SH (2013) Automatic merging of tetrahedral meshes. Int J Numer Methods Eng 93(11):1191C1215MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mclaurin D, Marcum D, Remotigue M, Blades E (2013) Repairing unstructured triangular mesh intersections. Int J Numer Methods Eng 93(3):266–275MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pan M, Zhaoliang LI, Gao Z, Yang Y, Gengyu WU (2012) 3-d geological modeling-concept,methods and key techniques. Acta Geologica Sinica (English Edition) 86(4):1031–1036CrossRefGoogle Scholar
  22. 22.
    Tournois J, Alliez P, Devillers O (2008) Interleaving delaunay refinement and optimization for 2d triangle mesh generation. In: International meshing roundtable, October 14-17, 2007. Seattle, Washington, Usa, Proceedings, pp 83–101Google Scholar
  23. 23.
    Turner AK (2006) Challenges and trends for geological modelling and visualisation. Bull Eng Geol Environ 65(2):109–127CrossRefGoogle Scholar
  24. 24.
    Updegrove A, Wilson NM, Shadden SC (2016) Boolean and smoothing of discrete polygonal surfaces. Adv Eng Softw 95:16–27CrossRefGoogle Scholar
  25. 25.
    Vartziotis D, Athanasiadis T (2008) Mesh smoothing using the geometric element transformation method. Comput Methods Appl Mech Eng 197(45):3760–3767CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang CCL (2010) Approximate Boolean operations on large polyhedral solids with partial mesh reconstruction. IEEE Trans Vis Comput Graph 17(6):836–849CrossRefGoogle Scholar
  27. 27.
    Xiang-rong L, Mao P, Zhan-gang W, Hong-gang Q, Zhi-dong S, Jing M (2008) Algorithm on3d models based on tin and implementation on3d geological modeling. Geograph Geo-Inf Sci 24(4):6–10Google Scholar
  28. 28.
    Xiao Z, Chen J, Zheng Y, Zheng J, Wang D (2016) Booleans of triangulated solids by a boundary conforming tetrahedral mesh generation approach. Comput Graph 59(C):13–27CrossRefGoogle Scholar
  29. 29.
    Xu S, Keyser J (2013) Fast and robust Booleans on polyhedra. Cad Computer Aided Design 45(2):529–534MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhaoliang L, Mao P, Dakuang H, Wenling L, Shuiqing H, Peigang L, Mei Y (2016) Three dimensional structural modeling technique. Earth Sci 41 (12):2136–2146Google Scholar
  31. 31.
    Zhou L, Lu X, Wang H, Zhang W, Peng Y, Pan D (2018) Adaptive algorithm for three-dimensional mesh generation based on constrained delaunay. Int J Pattern Recogn Artif Intell 32(09):1855,017MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongjuan Wang
    • 1
  • Shuting Kan
    • 2
  • Xingli Zhang
    • 2
  • Xinming Lu
    • 2
  • Longquan Zhou
    • 2
  1. 1.Department of Information EngineerShandong University of Science and TechnologyTaianChina
  2. 2.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations