Advertisement

High-fidelity reversible data hiding by Quadtree-based pixel value ordering

  • Fuqiang Di
  • Minqing Zhang
  • Xin Liao
  • Jia Liu
Article
  • 25 Downloads

Abstract

Recently, the pixel value ordering (PVO) method has received a great deal of attention in the field of high-fidelity reversible data hiding. To improve the embedding performance of the PVO-based method, a quadtree-based pixel value ordering (QPVO) method based on dynamic quadtree partition is proposed in this paper. Instead of using equal-sized blocks, blocks in various sizes are adaptively generated based on the quadtree partitioning and block complexity. Smooth regions are divided into smaller blocks to obtain high embedding capacity, while rough regions are divided into larger blocks to avoid distortion. The decoder can recover the original image as well as the original quadtree structure by the block complexity. Extensive experiments demonstrate that the proposed QPVO method could significantly improve the embedding performance of these PVO-based methods, especially for a relatively small embedding payload.

Keywords

Reversible data hiding Pixel value ordering Quadtree partition Block complexity 

Notes

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (No. 61379152, 61403417, 61402530 and 61402162), Shaanxi Provincial Natural Science Foundation (2014JQ8301), Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3040), and the Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges (no. 2017WLFZZC001).

References

  1. 1.
    Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15:1042–1049CrossRefGoogle Scholar
  2. 2.
    Chen X, Sun X, Sun H, et al. (2014) Histogram shifting based reversible data hiding method using directed-prediction scheme. Multimedia Tools & Applications. 1-19Google Scholar
  3. 3.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21:412–417MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Goatrieux G, Guillou CL, Cauvin JM et al (2009) Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158–165CrossRefGoogle Scholar
  5. 5.
    Goljan M, Fridrich J (2001) Distortion-free data embedding for images. Proc 4th Inform Hiding Workshop 27:41MATHGoogle Scholar
  6. 6.
    Gonzalez RC, Woods RE (2007) Digital Image Processing (3rd Edition)[M]. Prentice-Hall, IncGoogle Scholar
  7. 7.
    Gui X, Li X, Yang B (2014) A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding. Signal Process 98:370–380CrossRefGoogle Scholar
  8. 8.
    Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20:3524–3533MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Li X, Li B, Yang B et al (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22:2181–2191MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Li X, Zhang W, Gui X et al (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inform Forens Secur 8:1091–1100CrossRefGoogle Scholar
  11. 11.
    Li XL, Li J, Li B et al (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205CrossRefGoogle Scholar
  12. 12.
    Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image Represent 28:21–27CrossRefGoogle Scholar
  13. 13.
    Liao X, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform[J]. Multimed Tools Appl.  https://doi.org/10.1007/s11042-016-3971-4
  14. 14.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions[J]. Signal Process Image Commun 58:146–156CrossRefGoogle Scholar
  15. 15.
    Luo L, Chen Z, Chen M et al (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inform Forensic Secur 5:187–193CrossRefGoogle Scholar
  16. 16.
    Ni Z, Shi YQ, Ansari N et al (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362CrossRefGoogle Scholar
  17. 17.
    Ou B, Li J, Zhao Y et al (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22:5010–5021MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ou B, Li XL, Zhao Y et al (2014) Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process Image Commun 29(7):760–772CrossRefGoogle Scholar
  19. 19.
    Peng F, Li XL, Yang B (2014) Improved pvo-based reversible data hiding. Digit Sign Process 25:255–265CrossRefGoogle Scholar
  20. 20.
    Qu XC, Kim HJ (2015) Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process 111:249–260CrossRefGoogle Scholar
  21. 21.
    Rabie T, Kamel I (2017) Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach[J]. Multimed Tools Appl 76(6):8627–8650CrossRefGoogle Scholar
  22. 22.
    Rabie T, Kamel I, Baziyad M (2018) Maximizing embedding capacity and, stego quality: curve-fitting in the transform domain[J]. Multimed Tools Appl 77(7):8295–8326CrossRefGoogle Scholar
  23. 23.
    Sachnev V, Kim HJ, Nam J et al (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19:989–999CrossRefGoogle Scholar
  24. 24.
    Shi YQ, Li XL, Zhang XP, Wu HT, Ma B (2016) Reversible data hiding: advances in the past two decades. IEEE Access 4:3210–3237CrossRefGoogle Scholar
  25. 25.
    Soleymani S H, Taherinia A H. (2018) High Capacity Image Data Hiding of Scanned Text Documents Using Improved Quadtree[J]. 2018, arXiv:1803.11286Google Scholar
  26. 26.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16:721–730MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  28. 28.
    Wang X, Ding J, Pei QQ (2016) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf Sci 310:16–35CrossRefGoogle Scholar
  29. 29.
    Weng S, Zhao Y, Pan JS et al (2008) Reversible watermarking based on invariability and adjustment on pixel pairs[J]. IEEE Sign ProcessLett 15(20):721–724CrossRefGoogle Scholar
  30. 30.
    Weng S, Pan JS, Li L et al (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding[J]. Inf Sci 369:144–159CrossRefGoogle Scholar
  31. 31.
    Weng SW, Liu YJ, Pan JS et al (2016) Reversible data hiding based on flexible block-partition and adaptive block-modification strategy. J Vis Commun Image Represent 41:185–199CrossRefGoogle Scholar
  32. 32.
    Zhang W, Wang H, Hou D, Yu N (2016) Reversible data hiding in encrypted images by reversible image transformation. IEEE Trans Multimed 18(8):1469–1479CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic technologyEngineering University of Chinese People’s Armed PoliceXi’anChina
  2. 2.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  3. 3.Key Laboratory of Network Crime Investigation of Hunan Provincial CollegesHunan Police AcademyChangshaChina

Personalised recommendations