Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 6, pp 7871–7892 | Cite as

Detection of oxidation region of flexible integrated circuit substrate based on topology mapping

  • Zhiyan Zhong
  • Yueming HuEmail author
Article
  • 65 Downloads

Abstract

Vision inspection has been extensively used in the field of defect measurement field as a non-contact and nondestructive measurement technique. The conventional methods of visual defect detection rely heavily on the standard templates and features of image, but the standard templates are difficult to obtain or even don’t exist in many application fields especially for the field of flexible Integrated Circuit (IC) substrate defect detection based on micro vision. To solve the above problems, an algorithm of oxidation defects detection based on topology mapping. First, the filter template of weighted average neighborhood closed curve based on topology mapping is used to remove the image noise. Second, an image segmentation method is proposed by using the idea of maximum variance between classes to find out the threshold, then the spatially filtered is used to remove the normal surface texture and the structure of the substrate which is introduced by metallographic microscope enlargement. Finally, experiments are performed to show that the filter template of weighted average neighborhood closed curve is better than the existing filters and effectively removes image noise, then the segmentation method in this paper works better.

Keywords

Flexible integrated circuit packaging substrates Topology mapping Defect inspection Image segmentation 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No.61573146), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2014ZX 02503), the Applied Science and Technology Research and Development Special Fund Project of Guangdong Province, China (Grant No.2015B010133003), the Natural Science Foundation of Guangdong Province, China (Grant No.2016A030313454).

References

  1. 1.
    Andrzej G, Marcin K, Andrzej D (2015) Visual detection of knives in security applications using active appearance models. Multimed Tools Appl 74:4253–4267.  https://doi.org/10.1007/s11042-013-1537-2 CrossRefGoogle Scholar
  2. 2.
    Broqvist P, Alkauskas A, Pasquarello A (2008) Charge transition levels of the Ge dangling bond defect at Ge/insulator interfaces. Mater Sci Semicond Process 11(5–6):226–229.  https://doi.org/10.1016/j.mssp.2008.10.010 CrossRefGoogle Scholar
  3. 3.
    Chen SH, Perng DB (2016) Automatic optical inspection system for IC molding surface IC. J Intell Manuf 27:915–926.  https://doi.org/10.1007/s10845-014-0924-5 CrossRefGoogle Scholar
  4. 4.
    Chen CY, Feng HM, Chen HC, Jou SM (2016) Dynamic image segmentation algorithm in 3D descriptions of remote sensing images. Multimed Tools Appl 75(16):1–21.  https://doi.org/10.1007/s11042-015-2795-y CrossRefGoogle Scholar
  5. 5.
    Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Computer Vision & Image Understanding 89(2):114–141.  https://doi.org/10.1016/S1077-3142(03)00009-2 Source: CiteSeerCrossRefzbMATHGoogle Scholar
  6. 6.
    Eva M, Graham H, Kevin MG et al (2015) Improving object segmentation by using EEG signals and rapid serial visual presentation. Multimed Tools Appl 74:10137–10159.  https://doi.org/10.1007/s11042-015-2805-0 CrossRefGoogle Scholar
  7. 7.
    Feng Y, Shen X, Chen H, Zhang X (2016) Segmentation fusion based on neighboring information for MR brain images. Multimed Tools Appl 76(22):1–23.  https://doi.org/10.1007/s11042-016-4098-3 CrossRefGoogle Scholar
  8. 8.
    Gonzalez RC, Woods RE (2011) Digital image processing. Electronics Industry, BeijingGoogle Scholar
  9. 9.
    Huang J, Ye F, Dong Z, Li D (2011) Correction of FPC solder position error based on mutual information entropy. Circuit World 37(1):46–51.  https://doi.org/10.1108/03056121111101287 CrossRefGoogle Scholar
  10. 10.
    Kondala R, Munivarkarasan D, Kallipudi VK, Siddineni PN, Roh YJ (2008) Optical pattern inspection for flex PCB-challenge and solution. The International Federation of Automatic Control Seoul. 8196–8202 KoreaGoogle Scholar
  11. 11.
    Kottari K, Delibasis K, Plagianakos V (2017) Real time vision-based measurements for quality control of industrial rods on a moving conveyor. Multimed Tools Appl 6:1–18.  https://doi.org/10.1007/s11042-017-4891-7 CrossRefGoogle Scholar
  12. 12.
    Li S, Fang Z, Chen H, Li J et al (2006) Defect influence on luminescence efficiency of GaN-based LEDs. Mater Sci Semicond Process 9(1–3):371–374.  https://doi.org/10.1016/j.mssp.2006.01.019 CrossRefGoogle Scholar
  13. 13.
    Liang LQ, Li D, Fu X, Zhang WJ (2016) Touch screen defect inspection based on sparse representation in low resolution images. Multimed Tools Appl 75(5):2655–2666.  https://doi.org/10.1007/s11042-015-2559-8 CrossRefGoogle Scholar
  14. 14.
    Liang LQ, Li D, Fu X, Zhang WJ (2016) A formal model for video shot segmentation and its application via animate vision. Multimed Tools Appl 75(5):2655–2666.  https://doi.org/10.1023/B:MTAP.0000039421.91449.10 Source: DBLPCrossRefGoogle Scholar
  15. 15.
    Liao CT, Lee WH, Lai SH (2012) A flexible PCB inspection system based on statistical learning. J Sign Process Syst 67:279–290.  https://doi.org/10.1007/s11265-010-0556-8 CrossRefGoogle Scholar
  16. 16.
    Lisanti G, Karaman S, Pezzatini D, Bimbo AD (2017) A multi-camera image processing and visualization system for train safety assessment. Multimed Tools Appl 13(Pt2):1–22.  https://doi.org/10.1007/s11042-017-4351-4 Source: arXivCrossRefGoogle Scholar
  17. 17.
    Liu L, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: Recognizing complex activities from sensor data. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) 1617–1623Google Scholar
  18. 18.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115.  https://doi.org/10.1016/j.neucom.2015.08.096 CrossRefGoogle Scholar
  19. 19.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing Complex Activities by a Probabilistic Interval-Based Model. Thirtieth Aaai Conference on Artificial Intelligence 1266–1272Google Scholar
  20. 20.
    Lu Y, Wei Y, Liu L, Zhong J et al (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76(8):1–19.  https://doi.org/10.1007/s11042-015-3188-y CrossRefGoogle Scholar
  21. 21.
    Ma W, Yang L, Zhang Y, Duan L (2016) Fast interactive stereo image segmentation. Multimed Tools Appl 75(18):10935–10948.  https://doi.org/10.1007/s11042-015-2817-9 CrossRefGoogle Scholar
  22. 22.
    Madhav M, Fikret E (1995) Automatic PCB inspection systems. IEEE Potentials 14(3):6–10CrossRefGoogle Scholar
  23. 23.
    Mihçak MK, Kozinsev I, Ramchandran K et al (1999) Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters 7(6):300–303CrossRefGoogle Scholar
  24. 24.
    Mu HB, Qi DW, Zhang MM (2010) Study on Wood Defects Recognition Based on Image Processing. 2010 IITA International Conference on Intelligent Transportation Systems and Intelligent Computing. 1:40–43 ChengduGoogle Scholar
  25. 25.
    Muthukumaran M, Gopalakrishnan S, Purna CRB et al (2017) An improved version of Otsu’s method for segmentation of weld defects on X-radiography images. Optik 142:109–118.  https://doi.org/10.1016/j.ijleo.2017.05.066 CrossRefGoogle Scholar
  26. 26.
    Otsu N (1979) A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1):62–66CrossRefGoogle Scholar
  27. 27.
    Qin L, Wang T (2017) Design and research of automobile anti-collision warning system based on monocular vision sensor with license plate cooperative target. Multimed Tools Appl 76(13):14815–14828.  https://doi.org/10.1007/s11042-016-4042-6 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shui PL (2005) Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain. IEEE Signal Processing Letters 12(10):681–684.  https://doi.org/10.1109/LSP.2005.855555 Source: IEEE XploreCrossRefGoogle Scholar
  29. 29.
    Shui PL, Zhao YB (2007) Image denoising algorithm using doubly local filtering with block-adaptive windows in wavelet domain. Signal Process 87(7):1721–1734.  https://doi.org/10.1016/j.sigpro.2007.01.021 Source: DBLPCrossRefzbMATHGoogle Scholar
  30. 30.
    Simpkins BS, Zhang H, Yu ET (2006) Defects in nitride semiconductors: from nanoscale imaging to macroscopic device behavior. Mater Sci Semicond Process 9(1–3):308–314.  https://doi.org/10.1016/j.mssp.2006.01.025 CrossRefGoogle Scholar
  31. 31.
    Song E, Qian Y, Liu H, Yan M, Song H et al (2017) A target-oriented segmentation method for specific tissues in MRI images of the brain. Multimed Tools Appl 3:1–17.  https://doi.org/10.1007/s11042-017-5484-1 CrossRefGoogle Scholar
  32. 32.
    Tan N, Clévy C, Chaillet N (2014) Performance analysis and characterization of micro-nanopositioning systems. Electron Lett 50(24):1853–1855.  https://doi.org/10.1049/el.2014.0926 CrossRefGoogle Scholar
  33. 33.
    Tan N, Clévy C, Laurent GJ, Chaillet N (2016) Compressive sensing-based metrology for micropositioning robots characterization. IEEE Robotics and Automation Letters (RA-L) 1(2):638–645.  https://doi.org/10.1109/LRA.2016.2523550 CrossRefGoogle Scholar
  34. 34.
    Taneja A, Ranjan P, Ujlayan A (2017) Multi-cell nuclei segmentation in cervical cancer images by integrated feature vectors. Multimed Tools Appl 1–20 DOI:  https://doi.org/10.1007/s11042-017-4864-x CrossRefGoogle Scholar
  35. 35.
    Wang Q, Li D, Zhang W (2008) Detecting defects in golden surfaces of flexible printed circuits using optimal Gabor filters. IITA Second International Symposium on Intelligent Information Technology Application, Shanghai, China 1:321–325Google Scholar
  36. 36.
    Wang Q, Li D, Zhang W, Cao D, Chen H (2010) Unsupervised defect detection of flexible printed circuit board gold surfaces based on wavelet packet frame. International Conference on Industrial & Information Systems 2:324–327.  https://doi.org/10.1109/INDUSIS.2010.5565716 Source: IEEE XploreCrossRefGoogle Scholar
  37. 37.
    Wang L, Zhao Y, Zhou Y, Hao J (2016) Calculation of flexible printed circuit boards (FPC) global and local defect detection based on computer vision. Circuit World 42(2):49–54.  https://doi.org/10.1108/CW-07-2014-0027 CrossRefGoogle Scholar
  38. 38.
    Wang LY, Zhao Y, Zhou YM, Hao JB (2016) Calculation of flexible printed circuit boards (FPC) global and local defect detection based on computer vision. Circuit World 42(2):49–54.  https://doi.org/10.1108/CW-07-2014-0027 CrossRefGoogle Scholar
  39. 39.
    West GAW (1984) A system for the automatic visual bared-printed circuit boards. IEEE Transactions on Systems, Man and Cybernetics 14(5):767–773.  https://doi.org/10.1109/TSMC.1984.6313300 CrossRefGoogle Scholar
  40. 40.
    Wu WY, Wang MJJ, Liu CM (1996) Automated inspection of printed circuit boards through machine vision. Comput Ind 28(2):103–111.  https://doi.org/10.1016/0166-3615(95)00063-1 CrossRefGoogle Scholar
  41. 41.
    Xi Q, Rauschenbach T, Daoliang L (2017) Review of underwater machine vision technology and its applications. Mar Technol Soc J 51(1):75–97.  https://doi.org/10.4031/MTSJ.51.1.8 CrossRefGoogle Scholar
  42. 42.
    Yang Y, Lou Y, Gao M, Ma G (2018) An automatic aperture detection system for LED cup based on machine vision. Multimed Tools Appl 4:1–18.  https://doi.org/10.1007/s11042-018-5639-8 CrossRefGoogle Scholar
  43. 43.
    Ye F, Li D, Huang J, Dong Z (2012) Flaw detection on FPC solder surface. Circuit World 38(3):142–152.  https://doi.org/10.1108/03056121211250669 CrossRefGoogle Scholar
  44. 44.
    Zhang J, Ye YT, Xie Y et al (2013) High density print circuit board line width measurement algorithm based on statistical process control theory. Optik 124(20):4472–4447.  https://doi.org/10.1016/j.ijleo.2013.03.012 CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Zhang R, Kang W (2017) Detecting fraudulent labeling of rice samples using computer vision and fuzzy knowledge. Multimed Tools Appl 1:1–14.  https://doi.org/10.1007/s11042-017-4472-9 CrossRefGoogle Scholar
  46. 46.
    Zheng H, Kong LX, Nahavandi S (2002) Automatic inspection of metallic surface defects using genetic algorithms. Journal of Materials Processing Technology s 125-126(36):427–433.  https://doi.org/10.1016/S0924-0136(02)00294-7 CrossRefGoogle Scholar
  47. 47.
    Zhu H, Zhuang Z, Zhou J, Zhang F, Wang X (2017) Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimization. Multimed Tools Appl 76(6):1–18.  https://doi.org/10.1007/s11042-016-3486-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Automation Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Engineering Research Center for Precision Electronic Manufacturing Equipments of Ministry of EducationGuangzhouPeople’s Republic of China

Personalised recommendations