Advertisement

FADU-EV an automated framework for pre-release emotive analysis of theatrical trailers

  • Jaiteg Singh
  • Gaurav Goyal
  • Sahil Gupta
Article
  • 15 Downloads

Abstract

Release of a theatrical movie trailer is a major marketing practice and a considerable cost is associated with it. Evaluating the effectiveness of a theatrical movie trailer before its release could substantially contribute towards enriching its contents and economic value. The relationship between the emotional responses generated in response to a movie trailer cannot be effectively measured using traditional methods such as surveys and interviews. This paper proposes a framework to measure the effectiveness of movie trailers by measuring emotive response of viewers. A case study was conducted to study the impact of a movie trailer release on stock value of movie using virtual stock markets. Further, the case study investigated the impact of emotionally intense movie trailer over its stock price. Based on emotive content of trailers, few of the movie stocks experienced a surge of two hundred and 50 % while others experienced a marginal rise of five to 10 % only. The observed results indicated a direct relation between release of movie trailer, its emotive content and abnormal positive returns of a movie stock.

Keywords

Dlib-ml Emotive response Social media Machine learning Movie trailer release SVM 

Notes

References

  1. 1.
    Adolphs R (2002) Recognizing emotion from facial expressions. Behav Cogn Neurosci Rev 1(1):21–62.  https://doi.org/10.1177/1534582302001001003 CrossRefGoogle Scholar
  2. 2.
    Agrawal M, Kishore R, Rao HR (2006) Market reactions to E-business outsourcing announcements: an event study. Inf Manag 43(7):861–873.  https://doi.org/10.1016/j.im.2006.08.002 CrossRefGoogle Scholar
  3. 3.
    Ayata D, Yaslan Y, Kamasak M (2017) Emotion recognition via random forest and galvanic skin response: comparison of time based feature sets, window sizes and wavelet approaches. 2016 Medical Technologies National Conference, TIPTEKNO 2016, 16–19.  https://doi.org/10.1109/TIPTEKNO.2016.7863130
  4. 4.
    Bakardjieva E, Kimmel AJ (2017) Neuromarketing research practices: attitudes, ethics, and behavioral intentions. Ethics & Behavior 27(3):179–200CrossRefGoogle Scholar
  5. 5.
    Bertero D, Siddique, Bin F, Wu C, Wan Y, Ho,R, Chan Y, Fung P (2016) Real-time speech emotion and sentiment recognition for interactive dialogue systems. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP-16), 1042–1047Google Scholar
  6. 6.
    Bhargava HK, Power DJ, Sun D (2007) Progress in web-based decision support technologies. Decis Support Syst 43(4):1083–1095.  https://doi.org/10.1016/j.dss.2005.07.002 CrossRefGoogle Scholar
  7. 7.
    Carlson NR (2010) Psychology: the science of behaviour. Pearson Education, TorontoGoogle Scholar
  8. 8.
    Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Transactions on Neural Networks and Learning Systems 28(10):2294–2305Google Scholar
  9. 9.
    Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017a) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE TRANSACTIONS ON CYBERNETICS, 47, 5, 2017, 26(8), 3911–3920.  https://doi.org/10.1109/TIP.2017.2708506
  10. 10.
    Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017b) Bi-level semantic representation analysis for multimedia event detection. IEEE Transactions on Cybernetics 47(5):1180–1197.  https://doi.org/10.1109/TCYB.2016.2539546 CrossRefGoogle Scholar
  11. 11.
    Chang X, Yu YL, Yang Y, Xing EP (2017c) Semantic pooling for complex event analysis in untrimmed videos. IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 5, MAY 2017, 39(8), 1617–1632.  https://doi.org/10.1109/TPAMI.2016.2608901
  12. 12.
    Chen Y-L, Chang C-L, Yeh C-S (2017) Emotion classification of YouTube videos. Decis Support Syst 101(C:40–50.  https://doi.org/10.1016/j.dss.2017.05.014 CrossRefGoogle Scholar
  13. 13.
    Devlin MB, Chambers LT, Callison C (2011) Targeting mood : using comedy or serious movie trailers. J Broadcast Electron Media 55(4):581–595.  https://doi.org/10.1080/08838151.2011.620668 CrossRefGoogle Scholar
  14. 14.
    Drozdova N (2014) Measuring emotions in marketing and consumer behavior. Is Face Reader an applicable tool? Retrieved from https://brage.bibsys.no/xmlui/bitstream/handle/11250/223267/masterthesis119.pdf?sequence=1
  15. 15.
    Ekman P, Friesen WV (1976) Measuring facial movement. Environmental Psychology and Nonverbal Behavior 1(1):56–75Google Scholar
  16. 16.
    Ekman P, Rosenberg EL (eds) (1997) What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS). Oxford University Press, USAGoogle Scholar
  17. 17.
    Elberse A (2007) The power of stars: do star actors drive the success of movies? J Mark 71(4):102–120.  https://doi.org/10.1509/jmkg.71.4.102 CrossRefGoogle Scholar
  18. 18.
    Elberse A, Anand B (2007) The effectiveness of pre-release advertising for motion pictures: An empirical investigation using a simulated market.  https://doi.org/10.1016/j.infoecopol.2007.06.003
  19. 19.
    Faber RJ, O’Guinn TC (1984) Effect of media advertising and other sources on movie selection. J Mass Commun Q 61(2):371–377.  https://doi.org/10.1177/107769908406100219 Google Scholar
  20. 20.
    Fama FE (1991) Efficient capital markets: II. Journal of Finance, XLVI(5), 1575–1617. Retrieved from https://mail.google.com/mail/u/0/#inbox/15f0f9215a7940a5?projector=1
  21. 21.
    Foutz NZ, Jank W (2010) Research note : prerelease demand forecasting for motion pictures using functional shape analysis of virtual stock markets. Marketing Science. INFORMS.  https://doi.org/10.2307/40608166
  22. 22.
    Gruca TS (2000) The IEM movie box office market: integrating marketing and finance using electronic markets. J Mark Educ 22(1):5–14.  https://doi.org/10.1177/0273475300221002 CrossRefGoogle Scholar
  23. 23.
    Harrysson M, Metayer E, Sarrazin H (2012) How “social intelligence” can guide decisions. McKinsey Q 4:81–89Google Scholar
  24. 24.
    Izard CE (1977) Human emotions. Springer Science & Business Media, New YorkGoogle Scholar
  25. 25.
    Hazlett RL, Hazlett SY (1999) Emotional response to television commercials: facial EMG vs. self-report. J Advert Res 39(2):7–23Google Scholar
  26. 26.
    HSX. (2017). HSX.com – Help : What is HSX? Retrieved October 11, 2017, from https://www.hsx.com/help/
  27. 27.
    Iida T, Goto A, Fukuchi S, Amasaka K (2012) A study on effectiveness of movie trailers boosting customers’ appreciation desire: a customer science approach using statistics and GSR. J Bus Econ Res 10(6). Retrieved from) https://search.proquest.com/docview/1418700271?pq-origsite=gscholar
  28. 28.
    Joshi AM, Hanssens DM (2009) Movie advertising and the stock market valuation of studios: a case of “great expectations?”. Mark Sci 28(2):239–250.  https://doi.org/10.1287/mksc.1080.0392 CrossRefGoogle Scholar
  29. 29.
    Karray S, Debernitz L (2015) The effectiveness of movie trailer advertising. Int J Advert 487(December):1–25.  https://doi.org/10.1080/02650487.2015.1090521 Google Scholar
  30. 30.
    Karray S, Debernitz L (2017) The effectiveness of movie trailer advertising. Int J Advert 36(2):368–392.  https://doi.org/10.1080/02650487.2015.1090521 CrossRefGoogle Scholar
  31. 31.
    Kearns GS, Sabherwal R (2007) Strategic alignment between business and information technology: a knowledge-based view of behaviors, outcome, and consequences. J Manag Inf Syst 23(3):129–162.  https://doi.org/10.2753/MIS0742-1222230306 CrossRefGoogle Scholar
  32. 32.
    Kennedy R, Northover H (2016) How to use neuromeasures to make better advertising decisions. J Advert Res 56(2):10Google Scholar
  33. 33.
    Kernan L (2004) Coming attractions : reading American movie trailers. University of Texas Press. Retrieved from https://utpress.utexas.edu/books/kercom
  34. 34.
    King DE (2009) Dlib-ml: a machine learning toolkit. J Mach Learn Res 10:1755–1758.  https://doi.org/10.1145/1577069.1755843 Google Scholar
  35. 35.
    MacKinlay AC (1997) Event studies in economics and finance. J Econ Lit 35(1):13–39Google Scholar
  36. 36.
    McDuff D, Kaliouby R e (2017) Applications of automated facial coding in media measurement. IEEE Trans Affect Comput 8(2):148–160.  https://doi.org/10.1109/TAFFC.2016.2571284 CrossRefGoogle Scholar
  37. 37.
    McDuff D, El Kaliouby R, Kodra E, Picard R (2013) Measuring Voter’s Candidate Preference Based on Affective Responses to Election Debates. In 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (pp. 369–374). IEEE.  https://doi.org/10.1109/ACII.2013.67
  38. 38.
    Mehrabian A (1968) Inference of attitudes from the posture, orientation, and distance of a communicator. J Consult Clin Psychol 32(3):296–308.  https://doi.org/10.1037/h0025906 CrossRefGoogle Scholar
  39. 39.
    Mueller A (2011) Why movies cost so much to make | Investopedia. Retrieved March 31, 2017, from http://www.investopedia.com/financial-edge/0611/why-movies-cost-so-much-to-make.aspx
  40. 40.
    Osgood CE, May WH, Miron MS (1975) Cross-cultural universals of affective meaning. University of Illinois Press, Champaign, IL, USGoogle Scholar
  41. 41.
    Pham P, Wang J (2017) Understanding Emotional Responses to Mobile Video Advertisements via Physiological Signal Sensing and Facial Expression Analysis. Proceedings of the 22nd International Conference on Intelligent User Interfaces - IUI ‘17, 67–78.  https://doi.org/10.1145/3025171.3025186
  42. 42.
    Poels K, Dewitte S (2006) How to capture the heart? Reviewing 20 years of emotion measurement in advertising. J Advert Res 46(1):18–37.  https://doi.org/10.2501/S0021849906060041 CrossRefGoogle Scholar
  43. 43.
    Power DJ, Phillips-Wren G (2011) Impact of social media and web 2.0 on decision-making. J Decis Syst 20(3):249–261.  https://doi.org/10.3166/jds.20.249-261 CrossRefGoogle Scholar
  44. 44.
    Rob Meredith PO (2011) A framework for understanding the role of social media in business intelligence systems. J Decis Syst 20(3).  https://doi.org/10.3166/jds.20.263-282
  45. 45.
    Rodriguez M, Steinbock D, Watkins J, Gershenson C, Bollen J, Grey V, deGraf B (2007) Smartocracy: Social Networks for Collective Decision Making. In 2007 40th Annual Hawaii International Conference on System Sciences (HICSS’07) (pp. 90–90). IEEE.  https://doi.org/10.1109/HICSS.2007.484
  46. 46.
    Ruth JA, Brunel FF, Otnes CC (2002) Linking thoughts to feelings: investigating cognitive appraisals and consumption emotions in a mixed-emotions context. J Acad Mark Sci 30(1):44–58.  https://doi.org/10.1177/03079459994317 CrossRefGoogle Scholar
  47. 47.
    Schniederjans D, Cao ES, Schniederjans M (2013) Enhancing financial performance with social media: an impression management perspective. Decis Support Syst 55(4):911–918.  https://doi.org/10.1016/j.dss.2012.12.027 CrossRefGoogle Scholar
  48. 48.
    Soleymani M, Asghari-Esfeden S, Fu Y, Pantic M (2016) Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans Affect Comput 7(1):17–28.  https://doi.org/10.1109/TAFFC.2015.2436926 CrossRefGoogle Scholar
  49. 49.
    Solomon RC (2008) The philosophy of emotions. In: Lewis LF, Haviland-Jones M, Barrett JM (eds) Handbook of Emotions (3rd ed.). The Guilford Press, New YorkGoogle Scholar
  50. 50.
    Spann M, Skiera B (2003) Internet-based virtual stock Markets for Business Forecasting. Manag Sci 49(10):1310–1326 Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.7818&rep=rep1&type=pdf CrossRefGoogle Scholar
  51. 51.
    Stapleton CB, Hughes CE (2005) Mixed Reality and Experiential Movie Trailers: Combining Emotions and Immersion to Innovate Entertainment Marketing (pp. 23–27). Proceedings of 2005 International Conference on Human-Computer Interface Advances in Modeling and Simulation (SIMCHI’05) . Retrieved from http://www.cs.ucf.edu/~ceh/Publications/Papers/Content/SIMCHI05StapletonHughes.pdf
  52. 52.
    Tarvainen MP, Koistinen AS, Valkonen-Korhonen M, Partanen J, Karjalainen PA (2001) Analysis of galvanic skin responses with principal components and clustering techniques. IEEE Trans Biomed Eng 48(10):1071–1079.  https://doi.org/10.1109/10.951509 CrossRefGoogle Scholar
  53. 53.
    Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web. J Am Soc Inf Sci Technol 63(1):163–173.  https://doi.org/10.1002/asi.21662 CrossRefGoogle Scholar
  54. 54.
    Tuan Pham M, Cohen JB, Pracejus J W, Hughes GD (2001) Affect Monitoring and the Primacy of Feelings in Judgment. J Consum Res Inc., 28. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.4956&rep=rep1&type=pdf
  55. 55.
    Wang S, Ji Q (2015) Video affective content analysis: a survey of state-of-the-art methods. IEEE Trans Affect Comput 6(4):410–430.  https://doi.org/10.1109/TAFFC.2015.2432791 CrossRefGoogle Scholar
  56. 56.
    Wiles MA, Danielova A (2009) The worth of product placement in successful films: an event study analysis. J Mark 73(4):44–63.  https://doi.org/10.1509/jmkg.73.4.44 CrossRefGoogle Scholar
  57. 57.
    Wyer RS, Adaval R, Colcombe SJ (2002) Narrative-based representations of social knowledge: their construction and use in comprehension, memory, and judgment. Adv Exp Soc Psychol 34:131–197.  https://doi.org/10.1016/S0065-2601(02)80005-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ApplicationsChitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
  2. 2.Department of Computer Science and EngineeringChitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
  3. 3.Chitkara Business School, Chitkara UniversityRajpuraIndia

Personalised recommendations