Multimedia Tools and Applications

, Volume 78, Issue 6, pp 6869–6888 | Cite as

ABCD rule and pre-trained CNNs for melanoma diagnosis

  • Nayara MouraEmail author
  • Rodrigo Veras
  • Kelson Aires
  • Vinícius Machado
  • Romuere Silva
  • Flávio Araújo
  • Maíla Claro


Skin cancer is the most common type of cancer and represents more than half of cancer diagnoses. Melanoma is the least frequent among skin cancers, but it is the most serious, with high potential for metastasis and can lead to death. However, melanoma is almost always curable if discovered in the early stages. In this context, computational methods for processing and analysis of skin lesion images have been studied and developed. This work proposes a computational approach to assist dermatologists in the diagnosis of skin lesions in melanoma or non-melanoma by means of dermoscopic images. The proposed methodology classifies skin lesions using a descriptor formed by the combination of the ABCD rule (Asymmetry, Border, Color, and Diameter) and pre-trained Convolutional Neural Networks (CNNs) features. The features were selected according to their gain ratios and used as input to the MultiLayer Perceptron classifier. We built a new database joining two distinct databases presented in the literature to validate the proposed methodology. The proposed method achieved an accuracy rate of 94.9% and Kappa index of 89.2%, which is considered “excellent”.


Medical image classification ABCD rule Pre-trained CNNs Attribute selection Multilayer perceptron 



  1. 1.
    Al-Akaidi M (2004) Fractal speech processing. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Argenziano G, Soyer H, De Giorgi V, Piccolo D, Carli P, Delfino M (2000) Interactive atlas of dermoscopy (book and cd-rom),
  3. 3.
    Barcelos CAZ, Boaventura M, Silva E (2003) A well-balanced flow equation for noise removal and edge detection. IEEE Trans Image Process 12(7):751–763CrossRefGoogle Scholar
  4. 4.
    Bhati P, Singhal M (2015) Early stage detection and classification of melanoma. In: Communication, control and intelligent systems (CCIS), 2015, pp 181–185. IEEEGoogle Scholar
  5. 5.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  6. 6.
    Campbell Jr JL (2012) Dermnet skin disease atlas,
  7. 7.
    Cavalcanti PG, Scharcanski J (2011) Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph 35(6):481–491CrossRefGoogle Scholar
  8. 8.
    Cavalcanti PG, Scharcanski J, Baranoski GV (2013) A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert Syst Appl 40(10):4054–4064CrossRefGoogle Scholar
  9. 9.
    Chang WY, Huang A, Yang CY, Lee CH, Chen YC, Wu TY, Chen GS (2013) Computer-aided diagnosis of skin lesions using conventional digital photography: a reliability and feasibility study. PloS one 8(11):e76,212CrossRefGoogle Scholar
  10. 10.
    Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: Delving deep into convolutional nets. In: British machine vision conferenceGoogle Scholar
  11. 11.
    Chimieski BF, Fagundes RDR (2013) Association and classification data mining algorithms comparison over medical datasets. Journal of health informatics 5(2):44–51Google Scholar
  12. 12.
    Chu A, Sehgal CM, Greenleaf JF (1990) Use of gray value distribution of run lengths for texture analysis. Pattern Recogn Lett 11(6):415–419CrossRefGoogle Scholar
  13. 13.
    Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015) Deep learning, sparse coding, and svm for melanoma recognition in dermoscopy images. In: International workshop on machine learning in medical imaging, pp 118–126. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Cohen BA, Lehmann CU (2012) Johns hopkins university - dermatlas, dermatology image atlas .
  15. 15.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  16. 16.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on, vol 1, pp 886–893.IEEEGoogle Scholar
  17. 17.
    Dasarathyand BR, Holder EB (1991) Image characterizations based on joint gray-level run-length distributions. Pattern Recogn Lett 12(8):497–502CrossRefGoogle Scholar
  18. 18.
    Diepgen TL, Yihune G (2016) Dermatology information system – dermis., (2012). Accessed September 12
  19. 19.
    Fix E, Hodges Jr JL (1951) Discriminatory analysis-nonparametric discrimination: consistency properties, Tech. rep., California Univ BerkeleyGoogle Scholar
  20. 20.
    Galloway MM (1975) Texture analysis using gray level run lengths. Computer graphics and image processing 4(2):172–179CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Gutiérrez PA, Hervás-martínez C, Martínez-Estudillo FJ (2011) Logistic regression by means of evolutionary radial basis function neural networks. IEEE Transactions on Neural Networks 22(2):246–263CrossRefGoogle Scholar
  23. 23.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD explorations newsletter 11(1):10–18CrossRefGoogle Scholar
  24. 24.
    Halpern A, Marghoob A, Zemtsov A, Scope A, Kheterpal M (2015) International skin imaging collaboration.
  25. 25.
    Haralick RM, Shanmugam K, et al. (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRefGoogle Scholar
  26. 26.
    Haykin SS (2009) Neural networks and learning machines, vol 3. Pearson Upper Saddle River, NJ, USAGoogle Scholar
  27. 27.
    Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14. New York, USA, pp 675–678Google Scholar
  28. 28.
    Kasmi R, Mokrani K (2016) Classification of malignant melanoma and benign skin lesions: implementation of automatic abcd rule. IET Image Process 10(6):448–455CrossRefGoogle Scholar
  29. 29.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates Inc, pp 1097-1105Google Scholar
  30. 30.
    Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE Journal of Biomedical and Health Informatics 21:31–40CrossRefGoogle Scholar
  31. 31.
    Lacy K, Alwan W (2013) Skin cancer. Med 41(7):402–405CrossRefGoogle Scholar
  32. 32.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  33. 33.
    Li SZ (2009) Markov random field modeling in image analysis Springer Science & Business MediaGoogle Scholar
  34. 34.
    Melton JL, Swanson JR (2012) Loyola university dermatology medical education, skin cancer and benign tumor image atlas.
  35. 35.
    Mendonça T, Ferreira PM, Marques JS, Marcal AR, Rozeira J (2013) Ph2-a dermoscopic image database for research and benchmarking. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp 5437–5440. IEEE.
  36. 36.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59CrossRefGoogle Scholar
  37. 37.
    Oliveira RB, Marranghello N, Pereira AS, Tavares JMR (2016) A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Syst Appl 61:53–63CrossRefGoogle Scholar
  38. 38.
    Powers D (2007) Evaluation: from precision, recall and f-factor to roc, informedness, markedness and correlation. Adelaide, AustraliaGoogle Scholar
  39. 39.
    Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric engineering and remote sensing 52(2):223–227Google Scholar
  40. 40.
    Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive ScienceGoogle Scholar
  41. 41.
    Sánchez-Monedero J, Sáez A, Pérez-Ortiz M, Gutiérrez PA, Hervás-martínez C (2016) Classification of melanoma presence and thickness based on computational image analysis. In: International conference on hybrid artificial intelligence systems, pp 427–438. Springer, BerlinGoogle Scholar
  42. 42.
    SCF (2017) Skin cancer & facts statistics., Accessed May 15
  43. 43.
    Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
  44. 44.
    Sobel I (1970) Camera models and machine perception. Tech. rep., DTIC DocumentGoogle Scholar
  45. 45.
  46. 46.
    Suzumura Y (2012) Ysp dermatology image database.
  47. 47.
    Tajbakhsz N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging 35:1299–1312CrossRefGoogle Scholar
  48. 48.
    Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Transactions on Systems Man, and Cybernetics 8(6):460–473CrossRefGoogle Scholar
  49. 49.
    Total S (2012) Câncer da pele: fotoproteção, vida saudável com o sol.
  50. 50.
    UK CR (2017) Skin cancer. Accessed March 15, 2018
  51. 51.
    Vogado LH, Veras RM, Araujo FH, Silva RR, Aires KR (2018) Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng Appl Artif Intell 72:415–422. CrossRefGoogle Scholar
  52. 52.
    Wang SH, Sun J, Phillips P, Zhao G, Zhang YD (2017) Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. Journal of Real-Time Image Processing, pp 1–12. Scholar
  53. 53.
    WHO How common is skin cancer? Accessed May 15, 2017
  54. 54.
    Zhang YD, Dong Z, Chen X, Jia W, Du S, Muhammad K, Wang SH (2017) Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications. Scholar
  55. 55.
    Zhang Y.D, Muhammad K, Tang C (2018) Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on gpu platform. Multimedia Tools and Applications. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nayara Moura
    • 1
    Email author
  • Rodrigo Veras
    • 1
  • Kelson Aires
    • 1
  • Vinícius Machado
    • 1
  • Romuere Silva
    • 2
  • Flávio Araújo
    • 2
  • Maíla Claro
    • 1
  1. 1.Federal University of PiauíTeresinaBrazil
  2. 2.Federal University of PiauíPicosBrazil

Personalised recommendations