Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 2, pp 2447–2464 | Cite as

Adaptive pattern selection strategy for diamond search algorithm in fast motion estimation

  • Zhibin PanEmail author
  • Rui Zhang
  • Weiping Ku
  • Yidi Wang
Article
  • 67 Downloads

Abstract

In this paper, an adaptive pattern selection strategy for diamond search (DS) algorithm is proposed. DS is one of state-of-the-art motion estimation algorithms, while the fixed search strategy and the singular termination strategy lead to lots of redundancy of search points. The proposed search strategy is based on the observation that more than 75% motion vector differences are around the initial predicted search centre in the range of 1. In our search strategy, small diamond search pattern and large diamond search pattern are adaptively used according to the distribution of motion vector differences and the matching error information of initial search centre. Our search strategy focuses on how to use small diamond search pattern and large diamond search pattern more efficiently than diamond search algorithm without introducing additional search patterns. Experimental results show that the proposed algorithm can save about 10.81 search points and achieve 0.12 dB higher PSNR on average compared to DS.

Keywords

Motion estimation Adaptive pattern selection Diamond search algorithm Block-based matching algorithm 

Notes

Acknowledgments

This work is supported in part by the Open Project Program of the State Key Lab of Novel Software Technology (Grant No. KFKT2016B14), Nanjing University, the Open Research Fund of CAS Key Laboratory of Spectral Imaging Technology (Grant No. LSIT201606D) and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (Grant No. 201800030).

References

  1. 1.
    Al-Najdawi N, Ai-Najdawi MN, Tedmori S (2014) Employing a novel cross-diamond search in a modified hierarchical search motion estimation algorithm for video compression. Inf Sci 268:425–435CrossRefGoogle Scholar
  2. 2.
    Amirpour H, Mousavinia A (2016) A dynamic search pattern motion estimation algorithm using prioritized motion vectors. SIViP 10(8):1393–1400CrossRefGoogle Scholar
  3. 3.
    Arora SM, Rajpal N, Khanna K (2016) A new approach with enhanced accuracy in zero motion prejudgment for motion estimation in real-time applications. J Real-Time Image Proc 1–17Google Scholar
  4. 4.
    Cheung C-H, Po L-M (2009) A novel cross-diamond search algorithm for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 12(12):1168–1177CrossRefGoogle Scholar
  5. 5.
    Choi C, Jeong J (2014) Successive elimination algorithm for constrained one-bit transform based motion estimation using the Bonferroni inequality. IEEE Signal Process Lett 21(10):1–1MathSciNetCrossRefGoogle Scholar
  6. 6.
    González-Díaz I, Díaz-de-María F (2008) Adaptive multipattern fast block-matching algorithm based on motion classification techniques. IEEE Trans Circuits Syst Video Technol 18(10):1369–1382CrossRefGoogle Scholar
  7. 7.
    Ismail Y, McNeely JB, Shaaban M et al (2012) Fast motion estimation system using dynamic models for H.264/AVC video coding. IEEE Trans Circuits Syst Video Technol 22(1):28–42CrossRefGoogle Scholar
  8. 8.
    Jia LH, Au OC, Tsui CY, Shi YF, Ma R, Zhang H (2013) A diamond search window based adaptive search range algorithm. Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (Icmew)Google Scholar
  9. 9.
    Kerfa D, Belbachir MF (2016) Star diamond: an efficient algorithm for fast block matching motion estimation in H264/Avc video codec. Multimed Tools Appl 75(6):3161–3175CrossRefGoogle Scholar
  10. 10.
    Ko YH, Kang HS, Lee SW (2011) Adaptive search range motion estimation using neighboring motion vector differences. IEEE Trans Consum Electron 57(2):726–730CrossRefGoogle Scholar
  11. 11.
    Lam C-W, Po L-M, Cheung CH (2003) A new cross-diamond search algorithm for fast block matching motion estimation. International Conference on Neural Networks & Signal Processing 2(12):1262–1265Google Scholar
  12. 12.
    Lee S (2010) Fast motion estimation based on search range adjustment and matching point decimation. IET Image Process 4(1):1–10CrossRefGoogle Scholar
  13. 13.
    Li C, Jiang KH (2014) A modified hexagon diamond search algorithm for fast motion estimation. Information Science and Management Engineering 1-3(46):1379–1386Google Scholar
  14. 14.
    Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol 4(4):438–442CrossRefGoogle Scholar
  15. 15.
    Luo J, Yang XH, Liu LH (2015) A fast motion estimation algorithm based on adaptive pattern and search priority. Multimed Tools Appl 74(24):11821–11836CrossRefGoogle Scholar
  16. 16.
    Ma T, Wang Y, Tang M, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2016) LED: a fast overlapping communities detection algorithm based on structural clustering. Neurocomputing 207:488–500CrossRefGoogle Scholar
  17. 17.
    Medhat A, Shalaby A, Sayed MS, Elsabrouty M (2016) Adaptive low-complexity motion estimation algorithm for high efficiency video coding encoder. IET Image Process 10(6):438–447CrossRefGoogle Scholar
  18. 18.
    Nalluri P, Alves LN, Navarro A (2015) Complexity reduction methods for fast motion estimation in HEVC. Signal Process Image Commun 39:280–292CrossRefGoogle Scholar
  19. 19.
    Nie Y, Ma K-K (2002) Adaptive rood pattern search for fast block-matching motion estimation. IEEE Trans Image Process 11(12):1442–1449CrossRefGoogle Scholar
  20. 20.
    Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176CrossRefGoogle Scholar
  21. 21.
    Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image Represent 40(Part B):516–524CrossRefGoogle Scholar
  22. 22.
    Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans Broadcast 62(3):675–684CrossRefGoogle Scholar
  23. 23.
    Paramkusam AV, Reddy VSK (2014) Two-layer motion estimation algorithm for video coding. Electron Lett 50(4):276–277CrossRefGoogle Scholar
  24. 24.
    Po L-M, Ma W-C (1996) A novel four-step search algorithm for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 6(3):313–317CrossRefGoogle Scholar
  25. 25.
    Po L-M, Ting C-W, Wong K-M et al (2007) Novel point-oriented inner searches for fast block motion estimation. IEEE Trans Multimed 9(1):9–15CrossRefGoogle Scholar
  26. 26.
    Purnachand N, Alves LN, Navarro A (2012) Fast motion estimation algorithm for HEVC. Consumer Electronics - Berlin (ICCE-Berlin), 2012 IEEE International Conference on, Berlin, pp 34–37Google Scholar
  27. 27.
    Purwar RK, Rajpal N (2013) A fast block motion estimation algorithm using dynamic pattern search. SIViP 7(1):151–161CrossRefGoogle Scholar
  28. 28.
    Shi ZR, Fernando WAC, Kondoz A (2011) Adaptive direction search algorithms based on motion correlation for block motion estimation. IEEE Trans Consum Electron 57(3):1354–1361CrossRefGoogle Scholar
  29. 29.
    Singh K, Ahamed SR (2013) Modified small-cross diamond search motion estimation algorithm for H.264/AVC. 2013 Annual IEEE India Conference (INDICON), Mumbai, pp 1–5Google Scholar
  30. 30.
    Singh K, Ahamed SR (2013) Modified small-cross diamond search motion estimation algorithm for H.264/AVC. IEEE India Conference pp 1–5Google Scholar
  31. 31.
    So H, Kim J, Cho W-K, Kim Y-S (2005) Fast motion estimation using modified diamond search patterns. Electron Lett 41(2):62–63CrossRefGoogle Scholar
  32. 32.
    Soroushmehr SMR, Samavi S, Shirani S (2014) Simple and efficient motion estimation algorithm by continuum search. Multimed Tools Appl 71(3):1615–1633CrossRefGoogle Scholar
  33. 33.
    Wiegand T, Sullivan GJ, Bjøntegaard G et al (2003) Overview of the H. 264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576CrossRefGoogle Scholar
  34. 34.
    Zhou Z, QMJ Wu, Huang F Sun X (2017) Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens Netw 13(2):155014771769417Google Scholar
  35. 35.
    Zhu S, Ma KK (2000) A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans Image Process 9(2):287–290CrossRefGoogle Scholar
  36. 36.
    Zhu C, Lin X, Chau LP (2002) Hexagon-based search pattern for fast block motion estimation. IEEE Trans Circ Syst Video Technol 12(5):349–355CrossRefGoogle Scholar
  37. 37.
    Zhu C, Lin X, Chau L-P (2002) Hexagon-based search pattern for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 12(5):349–355CrossRefGoogle Scholar
  38. 38.
    Zhu S, Tian J, Shen X, Belloulata K (2009)A new cross-diamond search algorithm for fast block motion estimation. IEEE Int Conf Image Process 1581–1584Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations