Advertisement

Partial-copy detection of non-simulated videos using learning at decision level

  • Z. Jezabel Guzman-Zavaleta
  • Claudia Feregrino-Uribe
Article

Abstract

There is a renewed tendency to improve video copy detection tasks due to the involved challenges in non-simulated applications. In an adverse real-world scenario, the volume of data to process as well as the variety of transformations to which a video is exposed increases continuously. Moreover, the interest in detecting not only long videos but also short partial copies increments the difficulties in copy detection methods. Therefore, we propose a practical copy detection method able to cope with partial-copies and useful in applications where real-time processing is required. To accomplish the desirable characteristics of high precision, fast processing and scalability, we use low-cost global descriptors in combination with a decision strategy adapted from a reinforcement learning technique. Our evaluation results are satisfactory to detect short segments of at least 2-seconds length under a non-simulated and severely transformed video dataset.

Keywords

Video copy detection Partial-copies Non-simulated attacks Passive fingerprint Q-learning 

Notes

References

  1. 1.
    Awad G, Over P, Kraaij W (2014) Content-based video copy detection benchmarking at TRECVID. ACM Trans Inf Syst 32(3):1–40.  https://doi.org/10.1145/2629531 CrossRefGoogle Scholar
  2. 2.
    Balntas V, Johns E, Tang L, Mikolajczyk K (2016) Pn-net: Conjoined triple deep network for learning local image descriptors. arXiv:1601.05030
  3. 3.
    Baraldi L, Douze M, Cucchiara R, Jégou H (2018) Lamv: Learning to align and match videos with kernelized temporal layers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern RecognitionGoogle Scholar
  4. 4.
    Batista da Silva H, Pereira de Almeida R, Barbosa da Fonseca G, Caetano C, Vieira D, do Patrocínio ZKG, De Albuquerque Araújo A, Guimarães SJF (2016) Video similarity search by using compact representations. In: Proceedings of the ACM Symposium on Applied Computing, pp 80–83.  https://doi.org/10.1145/2851613.2851876
  5. 5.
    Cutting JE, DeLong JE, Nothelfer CE (2010) Attention and the evolution of hollywood film. Psychol Sci 21(3):432–439.  https://doi.org/10.1177/0956797610361679 CrossRefGoogle Scholar
  6. 6.
    Cutting JE, Brunick KL, DeLong JE, Iricinschi C, Candan A (2011) Quicker, faster, darker: Changes in Hollywood film over 75 years. i-Perception 6(2):569–576.  https://doi.org/10.1068/i0441aap CrossRefGoogle Scholar
  7. 7.
    Douze M, Jégou H, Sandhawalia H, Amsaleg L, Schmid C (2009) Evaluation of GIST descriptors for web-scale image search. In: Proceedings of the ACM International Conference on Image Video Retrieval.  https://doi.org/10.1145/1646396.1646421
  8. 8.
    Esen E, Ozkan S, Atil I (2016) Large-Scale video search with efficient temporal voting structure. arXiv:1607.0
  9. 9.
    Esmaeili M, Fatourechi M, Ward R (2011) A robust and fast video copy detection system using content-based fingerprinting. IEEE Trans Inform Forensics Security 6 (1):213–226.  https://doi.org/10.1109/TIFS.2010.2097593 CrossRefGoogle Scholar
  10. 10.
    Fischer P, Dosovitskiy A, Brox T (2014) Descriptor matching with convolutional neural networks: a comparison to sift. arXiv:1405.5769
  11. 11.
    Guzman-Zavaleta ZJ, Feregrino-Uribe C (2016) towards a video passive content fingerprinting method for Partial-Copy detection robust against Non-Simulated attacks. Plos One 11(11):e0166,047.  https://doi.org/10.1371/journal.pone.0166047 CrossRefGoogle Scholar
  12. 12.
    Guzman-Zavaleta ZJ, Feregrino-Uribe C, Morales-Sandoval M, Menendez-Ortiz A (2017) A robust and low-cost video fingerprint extraction method for copy detection. Multimedia Tools and Applications 76(22):24,143–24,163.  https://doi.org/10.1007/s11042-016-4168-6 CrossRefGoogle Scholar
  13. 13.
    Held D, Thrun S, Savarese S (2015) Deep learning for single-view instance recognition. arXiv:1507.08286
  14. 14.
    Himeur Y, Sadi KA (2017) Robust video copy detection based on ring decomposition based binarized statistical image features and invariant color descriptor (RBSIf-ICD). Multimedia Tools and Applications pp 1–23.  https://doi.org/10.1007/s11042-017-5307-4
  15. 15.
    Jiang YG, Jiang Y, Wang J (2014) VCDB: a Large-Scale database for partial copy detection in videos. In: Proceedings of the European Conference on Computer Vision, pp. 357–371.  https://doi.org/10.1007/978-3-319-10593-2_24
  16. 16.
    Jiang YG, Wang J (2016) Partial Copy Detection in Videos: A Benchmark and An Evaluation of Popular Methods. IEEE Transactions on Big Data 2(1):32–42.  https://doi.org/10.1109/TBDATA.2016.2530714 CrossRefGoogle Scholar
  17. 17.
    Kalker T, Haitsma J, Oostveen J (2001) Issues with digital watermarking and perceptual hashing. In: Proceedings of the SPIE Multimedia Systems and Applications IV, vol. 4518, pp. 189–197.  https://doi.org/10.1117/12.448203
  18. 18.
    Kim S, Choi JY, Han S, Ro YM (2014) Adaptive weighted fusion with new spatial and temporal fingerprints for improved video copy detection. Signal Process Image Commun 29(7):788–806.  https://doi.org/10.1016/j.image.2014.05.002 CrossRefGoogle Scholar
  19. 19.
    Law-To J, Joly A, Boujemaa N (2007) MUSCLE-VCD-2007: A live benchmark for video copy detection https://www.rocq.inria.fr/imedia/civr-bench/data.html. Accessed: 2017-08-03
  20. 20.
    Lian S, Nikolaidis N, Sencar H Content-based video copy detection: a survey. Intelligent Multimedia Analysis for Security Applications. Studies in Computational Intelligence pp. 253–273.  https://doi.org/10.1007/978-3-642-11756-5_12
  21. 21.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) recognizing complex activities by a probabilistic Interval-Based model. In: Proceedings of the Conference on Artificial Intelligence, pp 1266–1272Google Scholar
  22. 22.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: Recognizing complex activities from sensor data. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp 1617–1623Google Scholar
  23. 23.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) fortune teller : Predicting your career path. In: Proceedings of the Conference on Artificial Intelligence, pp 201–207Google Scholar
  24. 24.
    Mobahi H, Collobert R, Weston J (2009) Deep learning from temporal coherence in video. In: Proceedings of the Annual International Conference on Machine Learning pp 737–744. ACMGoogle Scholar
  25. 25.
    Preotiuc-Pietro D, Hopkins D, Liu Y, Ungar L (2017) Beyond binary labels: Political ideology prediction of twitter users. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics.  https://doi.org/10.18653/v1/P17-1068
  26. 26.
    Ragho SR, Biradar CS (2015) Efficient and robust detection of duplicate videos in a large database: A Survey. International Journal of Science and Research (IJSR) 4 (6):1775–1778Google Scholar
  27. 27.
    Robertson DJ, Kramer RSS, Burton AM (2015) Face averages enhance user recognition for smartphone security. PLoS ONE 10 (3):e0119,460.  https://doi.org/10.1371/journal.pone.0119460 CrossRefGoogle Scholar
  28. 28.
    Rossion B, Hanseeuw B, Dricot L (2012) Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn 79 (2):138–57.  https://doi.org/10.1016/j.bandc.2012.01.001 CrossRefGoogle Scholar
  29. 29.
    Sandeep S, Sharma S, Thakur M, Bora PK (2016) Perceptual video hashing based on Tucker decomposition with application to indexing and retrieval of near-identical videos. Multimedia Tools and Applications 75(13):7779–7797.  https://doi.org/10.1007/s11042-015-2695-1 CrossRefGoogle Scholar
  30. 30.
    Shinde S, Chiddarwar G (2015) Recent Advances in Content Based Video Copy Detection. In: Proceedings of the International Conference on Pervasive Computing. IEEE, India, pp 1–6.  https://doi.org/10.1109/PERVASIVE.2015.7087093
  31. 31.
    Sun J, Wang J, Yuan H, Liu X, Liu J (2013) Unequally weighted video hashing for copy detection. In: Proceedings of the International Conference on Multimedia Modeling, pp. 546–557. SpringerGoogle Scholar
  32. 32.
    Sun J, Liu X, Wan W, Li J, Zhao D, Zhang H (2016) Video hashing based on appearance and attention features fusion via DBN. Neurocomputing 213:84–94.  https://doi.org/10.1016/j.neucom.2016.05.098 CrossRefGoogle Scholar
  33. 33.
    Sutton RS, Barto AG (1998) Reinforcement learning: An introduction, vol 1. MIT press, CambridgeGoogle Scholar
  34. 34.
    Tsivian Y, Civjans G (2005) Cinemetrics http://www.cinemetrics.lv/ Accessed: 2017-08-02
  35. 35.
    Wang L, Bao Y, Li H, Fan X, Luo Z (2017) Compact cnn based video representation for efficient video copy detection. In: Proceedings of the International Conference on MultiMedia Modeling, pp. 576–587. Springer International PublishingGoogle Scholar
  36. 36.
    Watkins C (1989) Learning from Delayed Rewards. Ph.D. thesis. Cambridge University, CambridgeGoogle Scholar
  37. 37.
    Wu X, Ngo CW, Hauptmann AG, Tan HK (2007) CC-WEB-VIDEO: Near-Duplicate Web Video Dataset http://vireo.cs.cityu.edu.hk/downloads.html. Accessed: 2017-08-03
  38. 38.
    Yu D, Deng L (2011) Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Proc Mag 28(1):145–154MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yuan F, Po Lm, Liu M, Xu X, Jian W, Wong K (2016) Shearlet Based Video Fingerprint for Content-Based Copy Detection. Journal of Signal and Information Processing pp 84–97Google Scholar
  40. 40.
    Zhang Y, Zhang X (2016) effective Real-Scenario video copy detection. In: Proceedings of the International Conference on Pattern Recognition. IEEE, Mexico, pp 3940–3945Google Scholar
  41. 41.
    Zhu Y, Huang X, Huang Q, Tian Q (2016) Large-scale video copy retrieval with temporal-concentration SIFT. Neurocomputing 187:83–91.  https://doi.org/10.1016/j.neucom.2015.09.114 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Engineering DepartmentUniversidad IberoamericanaPueblaMexico
  2. 2.Computer Science DepartmentInstituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)PueblaMéxico

Personalised recommendations