Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 2, pp 2135–2156 | Cite as

An efficient space filling curve based image encryption

  • P. MuraliEmail author
  • Veeramalai Sankaradass
Article
  • 49 Downloads

Abstract

There has been an increasing concern for the fast image encryption of multimedia data in the Internet world. The different varieties of encryption methods are introduced to ensure the fast execution, but most of the methods did not improve the speed. In this research work, a simple and the fast image encryption scheme based on Space Filling Curve (SFC) is proposed. The SFC is a method to traverse every pixel of the image continuously and based on that the proposed research work designed a new square-wave confusion and saw-tooth diffusion method for the fast image encryption. Initially, the original image is scrambled by square-wave confusion with different orders and subsequently diffused by saw-tooth diffusion method with different orders. This combination of confusion and diffusion is repeated in many times to obtain the final encrypted image. The experiment results and performance analysis demonstrate that our proposed scheme is a fast and efficient scheme.

Keywords

Image encryption Space filling curve Square-wave and saw-tooth 

Notes

References

  1. 1.
    Bhatnagar G, Jonathan Wu QM (2012) Selective image encryption based on pixels of interest and singular value decomposition. Digit Signal Process 22:648–663.  https://doi.org/10.1016/j.dsp.2012.02.005 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen J, Zhu Z, Fu C, Yu H (2014) A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn 77:1191–1207.  https://doi.org/10.1007/s11071-014-1370-9 CrossRefGoogle Scholar
  3. 3.
    Dong C’e (2014) Color image encryption using one-time keys and coupled chaotic systems. Signal Process Image Commun 29:628–640.  https://doi.org/10.1016/j.image.2013.09.006 CrossRefGoogle Scholar
  4. 4.
    Enayatifar R, Abdullah AH, Isnin IF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93.  https://doi.org/10.1016/j.optlaseng.2013.12.003 CrossRefGoogle Scholar
  5. 5.
    Eyebe Fouda JSA, Effa JY, Ali M (2014) Highly secured chaotic block cipher for fast image encryption. Appl Soft Comput 25:435–444.  https://doi.org/10.1016/j.asoc.2014.08.059 CrossRefGoogle Scholar
  6. 6.
    Huang X, Ye G (2014) An efficient self-adaptive model for chaotic image encryption algorithm. Commun Nonlinear Sci Numer Simul 19:4094–4104.  https://doi.org/10.1016/j.cnsns.2014.04.012 CrossRefGoogle Scholar
  7. 7.
    Kadir A, Hamdulla A, Guo W-Q (2014) Color image encryption using skew tent map and hyper chaotic system of 6th-order CNN. Opt - Int J Light Electron Opt 125:1671–1675.  https://doi.org/10.1016/j.ijleo.2013.09.040 CrossRefGoogle Scholar
  8. 8.
    Kalpana J, Murali P (2015) An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik - International Journal for Light and Electron Optics 126(24):5703–5709CrossRefGoogle Scholar
  9. 9.
    Krishnamoorthi R, Murali P (2014) Chaos based image encryption with orthogonal polynomials model and bit shuffling. IEEE International Conference on Signal Processing and Integrated Networks (SPIN), pp 107–112.  https://doi.org/10.1109/SPIN.2014.6776931
  10. 10.
    Krishnamoorthi R, Murali P (2017) A selective image encryption based on square-wave shuffling with orthogonal polynomials transformation suitable for mobile devices. Multimed Tools Appl 76:1217–1246.  https://doi.org/10.1007/s11042-015-3027-1 CrossRefGoogle Scholar
  11. 11.
    Li S, Zhao Y, Qu B, Wang J (2013) Image scrambling based on chaotic sequences and Veginère cipher. Multimed Tools Appl 66:573–588.  https://doi.org/10.1007/s11042-012-1281-z CrossRefGoogle Scholar
  12. 12.
    Liu H, Wang X (2013) Triple-image encryption scheme based on one-time key stream generated by chaos and plain images. J Syst Softw 86:826–834.  https://doi.org/10.1016/j.jss.2012.11.026 CrossRefGoogle Scholar
  13. 13.
    Liu H, Kadir A, Niu Y (2014) Chaos-based color image block encryption scheme using S-box. AEU - Int J Electron Commun 68:676–686.  https://doi.org/10.1016/j.aeue.2014.02.002 CrossRefGoogle Scholar
  14. 14.
    Luo Y, Du M, Liu J (2015) A symmetrical image encryption scheme in wavelet and time domain. Commun Nonlinear Sci Numer Simul 20:447–460.  https://doi.org/10.1016/j.cnsns.2014.05.022 CrossRefGoogle Scholar
  15. 15.
    Mirzaei O, Yaghoobi M, Irani H (2012) A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn 67:557–566.  https://doi.org/10.1007/s11071-011-0006-6 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Murali P, Sankaradass V (2018) An efficient ROI based copyright protection scheme for digital images with SVD and orthogonal polynomials transformation. Optik 170:242–264CrossRefGoogle Scholar
  17. 17.
    Murali P, Senthilkumar G (2009) Modified version of playfair cipher using linear feedback shift register. IEEE International Conference on Information and Management (ICME’ 09), pp 488–490Google Scholar
  18. 18.
    Naeem EA, Abd Elnaby MM, Soliman NF et al (2014) Efficient implementation of chaotic image encryption in transform domains. J Syst Softw 97:118–127.  https://doi.org/10.1016/j.jss.2014.07.026 CrossRefGoogle Scholar
  19. 19.
    Norouzi B, Mirzakuchaki S, Seyedzadeh SM, Mosavi MR (2014) A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed Tools Appl 71:1469–1497.  https://doi.org/10.1007/s11042-012-1292-9 CrossRefGoogle Scholar
  20. 20.
    Parvin Z, Seyedarabi H, Shamsi M (2016) A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimed Tools Appl 75:10631–10648.  https://doi.org/10.1007/s11042-014-2115-y CrossRefGoogle Scholar
  21. 21.
    SaberiKamarposhti M, Mohammad D, Shafry Mohd Rahim M, Yaghobi M (2014) Using 3-cell chaotic map for image encryption based on biological operations. Nonlinear Dyn 75:407–416.  https://doi.org/10.1007/s11071-013-0819-6 CrossRefGoogle Scholar
  22. 22.
    Sam IS, Devaraj P, Bhuvaneswaran RS (2012) A novel image cipher based on mixed transformed logistic maps. Multimed Tools Appl 56:315–330.  https://doi.org/10.1007/s11042-010-0652-6 CrossRefGoogle Scholar
  23. 23.
    Taneja N, Raman B, Gupta I (2012) Combinational domain encryption for still visual data. Multimed Tools Appl 59:775–793.  https://doi.org/10.1007/s11042-011-0775-4 CrossRefGoogle Scholar
  24. 24.
    Taneja N, Raman B, Gupta I (2012) Chaos based cryptosystem for still visual data. Multimed Tools Appl 61:281–298.  https://doi.org/10.1007/s11042-011-0837-7 CrossRefGoogle Scholar
  25. 25.
    Tang Z, Zhang X, Lan W (2015) Efficient image encryption with block shuffling and chaotic map. Multimed Tools Appl 74:5429–5448.  https://doi.org/10.1007/s11042-014-1861-1 CrossRefGoogle Scholar
  26. 26.
    Tedmori S, Al-Najdawi N (2014) Image cryptographic algorithm based on the Haar wavelet transform. Inf Sci 269:21–34.  https://doi.org/10.1016/j.ins.2014.02.004 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    ur Rehman A, Liao X, Kulsoom A, Abbas SA (2015) Selective encryption for gray images based on chaos and DNA complementary rules. Multimed Tools Appl 74:4655–4677.  https://doi.org/10.1007/s11042-013-1828-7 CrossRefGoogle Scholar
  28. 28.
    Wang X, Guo K (2014) A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn 76:1943–1950.  https://doi.org/10.1007/s11071-014-1259-7 CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang X, Liu L, Zhang Y (2015) A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng 66:10–18.  https://doi.org/10.1016/j.optlaseng.2014.08.005 CrossRefGoogle Scholar
  30. 30.
    Xie X, Livermore C (2016) A Pivot- hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach, Micro Electro Mechanical Systems (MEMS) 2017 IEEE 30th International Conference on, pp. 75–78Google Scholar
  31. 31.
    Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane MEMS actuators. Micro Electro Mechanical Systems (MEMS) 2017 IEEE 30th International Conference on, pp. 813–816. doi:  https://doi.org/10.1109/MEMSYS.2017.7863532
  32. 32.
    Xie X, Zaitsev Y, Luis Fernando Velásquez G, Seth JT, Carol L (2014) Scalable, MEMS-enabled vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24.  https://doi.org/10.1088/0960-1317/24/12/125014
  33. 33.
    Xie X, Zaitsev Y, Velasquez-Garcia L Teller S, Livermore C (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. Proc Solid-state Sens, Actuat Microsyst Workshop: 127–130Google Scholar
  34. 34.
    Ye G (2010) Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recogn Lett 31:347–354.  https://doi.org/10.1016/j.patrec.2009.11.008 CrossRefGoogle Scholar
  35. 35.
    Ye G (2014) A block image encryption algorithm based on wave transmission and chaotic systems. Nonlinear Dyn 75:417–427.  https://doi.org/10.1007/s11071-013-1074-6 CrossRefGoogle Scholar
  36. 36.
    Ye G, Wong K-W (2012) An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dyn 69:2079–2087.  https://doi.org/10.1007/s11071-012-0409-z MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ye G, Wong K-W (2013) An image encryption scheme based on time-delay and hyperchaotic system. Nonlinear Dyn 71:259–267.  https://doi.org/10.1007/s11071-012-0658-x MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang Y-Q, Wang X-Y (2014) A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf Sci 273:329–351.  https://doi.org/10.1016/j.ins.2014.02.156 CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Xiao D, Wen W, Li M (2014) Cryptanalyzing a novel image cipher based on mixed transformed logistic maps. Multimed Tools Appl 73:1885–1896.  https://doi.org/10.1007/s11042-013-1684-5 CrossRefGoogle Scholar
  40. 40.
    Zhu H, Zhao C, Zhang X, Yang L (2014) An image encryption scheme using generalized Arnold map and affine cipher. Opt - Int J Light Electron Opt 125:6672–6677.  https://doi.org/10.1016/j.ijleo.2014.06.149 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringVel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering CollegeChennaiIndia

Personalised recommendations