Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 24, pp 31607–31625 | Cite as

Non-rigid point set registration via global and local constraints

  • Changcai Yang
  • Meifang Zhang
  • Zejun Zhang
  • Lifang Wei
  • Riqing Chen
  • Huabing Zhou
Article

Abstract

Non-rigid point set registration is often encountered in meical image processing, pattern recognition, and computer vision. This paper presents a new method for non-rigid point set registration that can be used to recover the underlying coherent spatial mapping (CSM). Firstly, putative correspondences between two point sets are established by using feature descriptors. Secondly, each point is expressed as a weighted sum of several nearest neighbors and the same relation holds after the transformation. Then, this local geometrical constraint is combined with the global model, and the transformation problem is solved by minimizing an error function. These two steps of recovering point correspondences and transformation are performed iteratively to obtained a promising result. Extensive experiments on various synthetic and real data demonstrate that the proposed approach is robust and outperforms the state-of-the-art methods.

Keywords

Point set registration Coherent spatial mapping Local geometrical constraint 

Notes

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 61501120 and 41501505 and in part by 2016 Outstanding Youth Research Talent Cultivation Program in Colleges and Universities in Fujian Province.

References

  1. 1.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(24):509–522CrossRefGoogle Scholar
  2. 2.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  3. 3.
    Bishop CM (2006) Pattern rcognition and machine learning. SpringerGoogle Scholar
  4. 4.
    Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  5. 5.
    Carpaneto PG (1980) Algorithm 548: solution of the assignment problem. ACM Trans Math Softw 6(1):104–111CrossRefGoogle Scholar
  6. 6.
    Chen J, Ma J, Yang C, Wei J, Ma L (2015) Non-rigid point set registration via coherent spatial mapping. Signal Process 106:62–72CrossRefGoogle Scholar
  7. 7.
    Chen L, Huang X, Tian J (2015) Retinal image registration using topological vascular tree segmentation and bifurcation structures. Biomed Signal Process Control 16:22–31CrossRefGoogle Scholar
  8. 8.
    Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 89:114–141CrossRefGoogle Scholar
  9. 9.
    Dempster A, Laird N, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Series B 39(1):1–38MathSciNetzbMATHGoogle Scholar
  10. 10.
    Du S, Bi B, Xu G, Zhu J, Zhang X (2017) Robust non-rigid point set registration via building tree dynamically. Multimed Tools Appl 76(9):12065–12081CrossRefGoogle Scholar
  11. 11.
    Fitzgibbon AW (2003) Robust registration of 2D and 3D point sets. Image Vis Comput 21:1145–1153CrossRefGoogle Scholar
  12. 12.
    Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906CrossRefGoogle Scholar
  13. 13.
    Giorgio Carpaneto PT (1980) Algorithm 548: solution of the assignment problem. ACM Trans Math Softw 6(1):104–111CrossRefGoogle Scholar
  14. 14.
    Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  15. 15.
    Jian B, Vemuri BC (2011) Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645CrossRefGoogle Scholar
  16. 16.
    LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRefGoogle Scholar
  17. 17.
    Lian W, Zhang L (2012) Robust point matching revisited: a concave optimization approach. In: Proceedings of European conference on computer visionGoogle Scholar
  18. 18.
    Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):840–853CrossRefGoogle Scholar
  19. 19.
    Ma J, Zhao J, Tian J, Bai X, Tu Z (2013) Regularized vector field learning with sparse approximation for mismatch removal. Pattern Recogn 46(12):3519–3532CrossRefGoogle Scholar
  20. 20.
    Ma J, Zhao J, Tian J, Tu Z, Yuille AL (2013) Robust estimation of nonrigid transformation for point set registration. In: IEEE Conference on computer vision and pattern recognition. IEEE, pp 2147–2154Google Scholar
  21. 21.
    Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ma J, Chen J, Ming D, Tian J (2014) A mixture model for robust point matching under multi-layer motion. PloS one 9(3):e92282CrossRefGoogle Scholar
  23. 23.
    Ma J, Zhou H, Zhao J, Gao Y, Jiang J, Tian J (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481CrossRefGoogle Scholar
  24. 24.
    Ma J, Qiu W, Zhao J, Ma Y, Yuille AL, Tu Z (2015) Robust L2E estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ma J, Zhao J, Yuille AL (2016) Non-rigid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ma J, Zhao J, Jiang J, Zhou H (2017) Non-rigid point set registration with robust transformation estimation under manifold regularization. In: Inproceedings of the Thirty-First AAAI conference on artificial intelligence (AAAI). AAAI, pp 4218–4224Google Scholar
  27. 27.
    Ma J, Jiang J, Liu C, Li Y (2017) Feature guided Gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration. Inf Sci 417:128–142MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ma J, Jiang J, Zhou H, Zhao J, Guo X (2018) Guided locality preserving feature matching for remote sensing image registration. IEEE Trans Geosci Remote Sensing.  https://doi.org/10.1109/TGRS.2018.2820040 CrossRefGoogle Scholar
  29. 29.
    Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275CrossRefGoogle Scholar
  30. 30.
    Wahba G (1990) Spline models for observational data. SIAM, PhiladelphiaCrossRefGoogle Scholar
  31. 31.
    Yan C, Zhang Y, Xu J, Li L, QionghaiDai F, Zhang Y, QionghaiDai A (2014) Highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576CrossRefGoogle Scholar
  32. 32.
    Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229CrossRefGoogle Scholar
  33. 33.
    Yan C, Xie H, Yang D, Yin J, Zhang Y (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295CrossRefGoogle Scholar
  34. 34.
    Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circ Syst Vid Technol 24(12):2077–2089CrossRefGoogle Scholar
  35. 35.
    Zheng Y, Doermann D (2006) Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans Pattern Anal Mach Intell 28(4):643–649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Changcai Yang
    • 1
  • Meifang Zhang
    • 2
  • Zejun Zhang
    • 3
  • Lifang Wei
    • 3
  • Riqing Chen
    • 3
  • Huabing Zhou
    • 4
  1. 1.Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Fujian Health CollegeFuzhouChina
  3. 3.College of Computer and Information SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  4. 4.Wuhan Institute of TechnologyWuhanChina

Personalised recommendations