Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 31281–31311 | Cite as

Directional PVO for reversible data hiding scheme with image interpolation

  • Sudipta Meikap
  • Biswapati Jana
Article
  • 94 Downloads

Abstract

Pixel Value Ordering (PVO) is an efficient data hiding scheme where pixels are ranked in ascending order within an image block and then modify minimum and maximum pixel value to embed secret data. The embedding capacity of existing PVO based data hiding schemes were limited to embed only two bits in a row of any block and unable to perform repeated embedding. To solve the existing problem, we have proposed a generalized directional PVO (DPVO) with varying block size. The original image is partitioned into blocks and then enlarged using image interpolation. A new parameter (α) is introduced and added with maximum pixel value and subtracted from minimum pixel value to maintain the order of the rank which is dependent on the size of the image block. To improve data hiding capacity, overlapped embedding has been considered in three different directions (1) Horizontal, (2) Vertical and (3) Diagonal of each block. Experiments show that the proposed scheme has a good margin of performance compared with the state-of-the-art methods. Several steganographic analysis deemed robust against several attacks.

Keywords

Reversible data hiding Pixel-value-ordering Prediction-error expansion Embedding capacity Steganalysis Steganographic attacks 

References

  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balasubramanian C, Selvakumar S, Geetha S (2014) High payload image steganography with reduced distortion using octonary pixel pairing scheme. Multimed Tools Appl 73(3):2223–2245CrossRefGoogle Scholar
  3. 3.
    Fridrich J, Goljan M, Du R (2001) Reliable detection of LSB steganography in color and grayscale images, In: Proceedings of the 2001 workshop on Multimedia and security: new challenges. ACM, pp 27–30Google Scholar
  4. 4.
    Jana B, Giri D, Mondal SK (2018) Dual image based reversible data hiding scheme using (7, 4) hamming code. Multimed Tools Appl 77(1):763–785CrossRefGoogle Scholar
  5. 5.
    Jana B (2016) Dual image based reversible data hiding scheme using weighted matrix. Int J Electron Inf Eng 5(1):6–19Google Scholar
  6. 6.
    Jana B, Giri D, Mondal SK (2016) Dual-Image Based Reversible Data Hiding Scheme Using Pixel Value Difference Expansion. IJ Netw Secur 18(4):633–643Google Scholar
  7. 7.
    Jana B (2016) High payload reversible data hiding scheme using weighted matrix. Optik-Int J Light Electron Opt 127(6):3347–3358CrossRefGoogle Scholar
  8. 8.
    Jana B, Giri D, Mondal SK (2017) Partial reversible data hiding scheme using (7, 4) hamming code. Multimed Tools Appl 76(20):21691–21706CrossRefGoogle Scholar
  9. 9.
    Jana B (2018) Reversible data hiding scheme using sub-sampled image exploiting Lagrange’s interpolating polynomial. Multimed Tools Appl 77(7):8805–8821CrossRefGoogle Scholar
  10. 10.
    Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/
  11. 11.
    Kumar R, Chand S (2016) A reversible high capacity data hiding scheme using pixel value adjusting feature. Multimed Tools Appl 75(1):241–259MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lee SK, Suh YH, Ho YS (2004) Lossless data hiding based on histogram modification of difference images, Advances in Multimedia Information Processing-PCM 2004, Springer Berlin Heidelberg, 340–347CrossRefGoogle Scholar
  13. 13.
    Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205CrossRefGoogle Scholar
  14. 14.
    Liu L, Wiliem A, Chen S, Lovell BC (2014) Automatic image attribute selection for zero-shot learning of object categories. In: 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, pp 2619–2624Google Scholar
  15. 15.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: Recognizing Complex Activities from Sensor Data. In: IJCAI, pp 1617–1623Google Scholar
  16. 16.
    Liu L, Nie F, Zhang T, Wiliem A, Lovell BC (2016) Unsupervised automatic attribute discovery method via multi-graph clustering. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp 1713–1718Google Scholar
  17. 17.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing Complex Activities by a Probabilistic Interval-Based Model. In: AAAI, vol 30, pp 1266–1272Google Scholar
  18. 18.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  19. 19.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune Teller: Predicting Your Career Path. In: AAAI, pp 201–207Google Scholar
  20. 20.
    Liu L, Wiliem A, Chen S, Lovell BC (2017) What is the best way for extracting meaningful attributes from pictures? Pattern Recogn 64:314–326CrossRefGoogle Scholar
  21. 21.
    Lu TC, Wu JH, Huang CC (2015) Dual-image-based reversible data hiding method using center folding strategy. Signal Process 115:195–213CrossRefGoogle Scholar
  22. 22.
    Lu TC, Tseng CY, Wu JH (2015) Dual imaging-based reversible hiding technique using LSB matching. Signal Process 108:77–89CrossRefGoogle Scholar
  23. 23.
    Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76(8):10701–10719CrossRefGoogle Scholar
  24. 24.
    Lu TC, Chi LP, Wu CH, Chang HP (2017) Reversible data hiding in dual stego-images using frequency-based encoding strategy. Multimed Tools Appl 76(22):23903–23929CrossRefGoogle Scholar
  25. 25.
    Malik A, Sikka G, Verma HK (2017) An image interpolation based reversible data hiding scheme using pixel value adjusting feature. Multimed Tools Appl 76(11):13025–13046CrossRefGoogle Scholar
  26. 26.
    Mielikainen J (2006) LSB Matching revisited. IEEE Signal Process Lett 13(5):285–287CrossRefGoogle Scholar
  27. 27.
    Ou B, Li X, Zhao Y, Ni R (2014) Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process Image Commun 29(7):760–772CrossRefGoogle Scholar
  28. 28.
    Ou B, Li X, Wang J (2016) Improved PVO-based reversible data hiding: A new implementation based on multiple histograms modification. J Vis Commun Image Represent 38:328–339CrossRefGoogle Scholar
  29. 29.
    Pal P, Chowdhuri P, Jana B (2017) Reversible Watermarking Scheme Using PVD-DE. In: International Conference on Computational Intelligence, Communications, and Business Analytics. Springer, Singapore, pp 511–524Google Scholar
  30. 30.
    Peng F, Li X, Yang B (2014) Improved PVO-based reversible data hiding. Digit Signal Process 25:255–265CrossRefGoogle Scholar
  31. 31.
    Qu X, Kim HJ (2015) Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process 111:249–260CrossRefGoogle Scholar
  32. 32.
    Sharp T (2001) An implementation of key-based digital signal steganography. In: International Workshop on Information Hiding. Springer, Berlin Heidelberg, pp 13–26CrossRefGoogle Scholar
  33. 33.
    The National Library of Medicine presents MedPix®, https://openi.nlm.nih.gov/gridquery.php?q=&it=x
  34. 34.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  35. 35.
    Turner LF (1989) Digital data security system. Patent IPN wo 89:08915Google Scholar
  36. 36.
    University of Southern California, ”The USC-SIPI Image Database”, http://sipi.usc.edu/database/database.php?volume=misc
  37. 37.
    University of California, Berkeley, ”The Berkeley Segmentation Dataset and Benchmark”, https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-images.tgz
  38. 38.
    Weng S, Pan JS, Jiehang D, Zhou Z (2017) Pairwise IPVO based reversible data hiding. Multimedia Tools and Applications.  https://doi.org/10.1007/s11042-017-4959-4 CrossRefGoogle Scholar
  39. 39.
    Zhang T, Liu L, Wiliem A, Lovell B (2016) Is alice chasing or being chased?: Determining subject and object of activities in videos. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp 1–7)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceHijli CollegePaschim MedinipurIndia
  2. 2.Department of Computer ScienceVidyasagar UniversityMidnaporeIndia

Personalised recommendations