Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1289–1313 | Cite as

Visualizing the Hotspots and Emerging Trends of Multimedia Big Data through Scientometrics

  • Yuran JinEmail author
  • Xin Li


Multimedia Big Data, known as the biggest big data, is becoming the forefront of big data research. However, a visualization research on the hotspots and trends of Multimedia Big Data through scientometric is still lacking. Based on the references from SCI-EXPANDED(SCIE), SSCI, CPCI-S, CPCI-SSHSI and arXiv databases in 2008–2017, the hotspots and emerging trends of Multimedia Big Data were identified for the first time by visualizing the co-cited references network, co-occurrence keywords network, burst references, burst keywords, Dual-Map Overlays network and Timeline networks with the information visualization software CiteSpaceV, Google Fusion Tables and Carrot2. The results show that: (1)Multimedia Big Data research has spread across the globe, especially in the United States, China and some European countries; (2)"big data”, “web application”, “data mining”, “virtual screening”, “cloud service”, “structure-activity relationship”, “similarity search problems”, “concept modeling”, etc. are the research hotspots; (3) the research focus evolved mainly from “basic security problems” and “algorithm problems” in the early, to technical problems, then to the applications and social impacts, and to “mobile internet”, “cloud”, “data screening”, “payment security”, etc. till now.(4) The emerging trends mainly include “social influence modeling”, “mobile media cloud”, “video surveillance system”, “semantic relations”, “privacy”, “internet of thing”, “precision medicine”, “parallel massive clustering”, etc.; (5) Multimedia Big Data research is developing toward interdisciplinary, of which “mathematics and systems” is a hot discipline and “medicine and clinical” is an emerging discipline; (6) the fusion development of multimedia big data with smart city, automotive industry, clothing industry and medical industry will be the trends of the times. The paper aims to promote the development of related theories on Multimedia Big Data and provide reference for researchers to identify relevant research directions.


Multimedia big data Visualization Research hotspots Emerging trends Scientometrics CiteSpace 



This work is supported by National Natural Science Foundation of China under Grant No. 71572031 and No. 71472080.


  1. 1.
    Agrafiotis DK (2003) Stochastic proximity embedding. J Comput Chem 24(10):1215–1221CrossRefGoogle Scholar
  2. 2.
    Agrafiotis DK, Xu H (2002) A self-organizing principle for learning nonlinear manifolds. Proc Natl Acad Sci U S A 99(25):15869MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aguilar AG, Posada MR (2012) Carrot2: búsqueda y visualización de la información. El Profesional De La Informacion 21:105–112CrossRefGoogle Scholar
  4. 4.
    Atrey PK, Emmanuel S, Mehrotra S, Kankanhalli MS (2012) Guest editorial: Privacy-aware multimedia surveillance systems. Multimedia Systems 18(2):95–97CrossRefGoogle Scholar
  5. 5.
    Bellini P, Nesi P, Rauch N (2015) Ontology bulding vs data harvesting and cleaning for smart-city services. arXiv:150801083. Accessed 15 Apr 2018
  6. 6.
    Bhargava B, Shi C, Wang SY (2004) MPEG Video Encryption Algorithms. In: ACM International Conference on Multimedia. pp 81–88Google Scholar
  7. 7.
    Chen C (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377CrossRefGoogle Scholar
  8. 8.
    Chen C (2016) How to Use CiteSpace. Lean Publishing, British Columbia, CanadaGoogle Scholar
  9. 9.
    Chen C, Leydesdorff L (2014) Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J Assoc Inf Syst Sci Technol 65(2):334–351. CrossRefGoogle Scholar
  10. 10.
    Chen Y, Chen C, Hu Z (2014) Principles and Applications of Analyzing a Citation Space: CiteSpace Practical Guide. China Science Publishing & Media Ltd, BeijingGoogle Scholar
  11. 11.
    Chen C, Dubin R, Schultz T (2014) Science Mapping. In: Khosrow-Pour M (ed) Encyclopedia of Information Science and Technology, 3rd edn. IGI Global, New York, pp 271–284. CrossRefGoogle Scholar
  12. 12.
    Chen C, Dubin R, Kim MC (2014) Orphan drugs and rare diseases: a scientometric review (2000-2014). Exp Opin Orphan Drugs 2(7):709–724CrossRefGoogle Scholar
  13. 13.
    Chen SC, Jain R, Tian Y, Wang H (2015) Multimedia: The Biggest Big Data. IEEE Trans Multimedia 17(9):1401–1403. CrossRefGoogle Scholar
  14. 14.
    Chen Y, Chen C, Liu Z, Hu Z, Wang X (2015) The methodology function of CiteSpace mapping knowledge domains. Stud Sci Sci 02:242–253Google Scholar
  15. 15.
    Dong G, Li R, Yang W, Wang W, Gong L, Shen G, Yu M, Lv J (2014) Microblog Burst Keywords Detection Based on Social Trust and Dynamics Model. Chin J Electron 23(4):695–700Google Scholar
  16. 16.
    Garfield E (2006) Citation indexes for science. A new dimension in documentation through association of ideas. Science 122(3159):108–111CrossRefGoogle Scholar
  17. 17.
    González-Teruel A, González-Alcaide G, Barrios M, Abad-García MF (2015) Mapping recent information behavior research: an analysis of co-authorship and co-citation networks. Scientometrics 103(2):687–705CrossRefGoogle Scholar
  18. 18.
    Guo K, Pan W, Lu M, Zhou X, Ma J (2015) An effective and economical architecture for semantic-based heterogeneous multimedia big data retrieval. J Syst Softw 102(C):207–216CrossRefGoogle Scholar
  19. 19.
    Hu C, Xu Z, Liu Y, Mei L, Chen L, Luo X (2014) Semantic Link Network-Based Model for Organizing Multimedia Big Data. IEEE Trans Emerg Top Comput 2(3):376–387CrossRefGoogle Scholar
  20. 20.
    Jayasena KPN, Li L, Xie Q (2017) Multi-modal Multimedia Big Data Analyzing Architecture and Resource Allocation on Cloud Platform. Neurocomputing 253:135–143. CrossRefGoogle Scholar
  21. 21.
    Jin Y, Ji S, Li X, Yu J (2017) A scientometric review of hotspots and emerging trends in additive manufacturing. J Manuf Technol Manag 28(1):18–38. CrossRefGoogle Scholar
  22. 22.
    Kim HK (2014) Interconnections of Object Management for U-healthcare Services. Int J Multimedia Ubiquit Eng 9(2):235–244MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kim HJ, Jeong YK, Song M (2016) Content- and proximity-based author co-citation analysis using citation sentences. J Inf Secur 10(4):954–966Google Scholar
  24. 24.
    Kleinberg J (2003) Bursty and hierarchical structure in streams. Data Min Knowl Disc 7(4):373–397MathSciNetCrossRefGoogle Scholar
  25. 25.
    Krell MM, Bernd J, Li Y, Ma D, Choi J, Ellsworth M, Borth D, Friedland G (2017) Field studies with multimedia big data: opportunities and challenges. arXiv:171209915. Accessed 20 Apr 2018
  26. 26.
    Li S, Sun Y (2014) The application of weighted co-occurring keywords time gram in academic research temporal sequence discovery. Proc Am Soc Inf Sci Technol 50(1):1–10MathSciNetGoogle Scholar
  27. 27.
    Li X, Cheung M, She J (2016) Connection discovery using shared images by Gaussian relational topic model. arXiv:161203639. Accessed 5 May 2018
  28. 28.
    Li J, Hu HP, Liu R (2017) Data restoration based on Gaussian noisy and motion-blurred snapshoots in multimedia big data. Multimedia Tools Appl:1–19Google Scholar
  29. 29.
    Liang J, Jiang L, Meng D, Hauptmann A (2016) Exploiting multi-modal curriculum in noisy web data for large-scale concept learning. arXiv:160704780. Accessed 6 May 2018
  30. 30.
    Lin Y, Ye S (2015) A selective encryption on medical images data. Appl Electron Tech 41(3):107–110Google Scholar
  31. 31.
    Liu Y, Zhu Y, Ni L, Xue G (2011) A Reliability-Oriented Transmission Service in Wireless Sensor Networks. IEEE Trans Parallel Distrib Syst 22(12):2100–2107CrossRefGoogle Scholar
  32. 32.
    Liu SB, Chen CM, Ding K, Wang B, Xu K, Lin Y (2014) Literature retrieval based on citation context. Scientometrics 101(2):1293–1307. CrossRefGoogle Scholar
  33. 33.
    Luo X, Xu Z, Yu J, Chen X (2011) Building Association Link Network for Semantic Link on Web Resources. IEEE Trans Autom Sci Eng 8(3):482–494CrossRefGoogle Scholar
  34. 34.
    Mylonas P, Spyrou E, Avrithis Y, Kollias S (2009) Using visual context and region semantics for high-level concept detection. IEEE Trans Multimedia 11(2):229–243CrossRefGoogle Scholar
  35. 35.
    Neale J, Green R, Landovskis A (2001) Interactive channel for multimedia satellite networks. IEEE Commun Mag 39(3):192–198CrossRefGoogle Scholar
  36. 36.
    Osiński S, Weiss D (2004) Conceptual Clustering Using Lingo Algorithm: Evaluation on Open Directory Project Data. Springer Berlin, HeidelbergGoogle Scholar
  37. 37.
    Samuel A, Sarfraz MI, Haseeb H, Basalamah S (2015) A Framework for Composition and Enforcement of Privacy-Aware and Context-Driven Authorization Mechanism for Multimedia Big Data. IEEE Trans Multimedia 17(9):1484–1494CrossRefGoogle Scholar
  38. 38.
    Sang J, Gao Y, Bao BK, Snoek C, Dai Q (2016) Recent advances in social multimedia big data mining and applications. Multimedia Systems 22(1):1–3CrossRefGoogle Scholar
  39. 39.
    Small H, Greenlee E (1980) Citation context analysis of a co-citation cluster: Recombinant-DNA. Scientometrics 2(4):277–301CrossRefGoogle Scholar
  40. 40.
    Smith JR (2013) Riding the multimedia big data wave. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1–2Google Scholar
  41. 41.
    Stefanowski J, Weiss D (2003) Carrot2 and language properties in web search results clustering. In: Menasalvas E, Segovia J, Szczepaniak PS (eds) Advances in Web Intelligence. Springer Berlin, Heidelberg, pp 240–249CrossRefGoogle Scholar
  42. 42.
    Steggink J, Snoek CGM (2011) Adding semantics to image-region annotations with the Name-It-Game. Multimedia Systems 17(5):367–378CrossRefGoogle Scholar
  43. 43.
    Su HN, Lee PC (2010) Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 85(1):65–79CrossRefGoogle Scholar
  44. 44.
    Tian Y, Chen SC, Shyu ML, Huang T, Sheu P, Bimbo AD (2015) Multimedia big data. IEEE Multimedia 22(3):93–95CrossRefGoogle Scholar
  45. 45.
    Wang Y, Tian Y, Su L, Fang X, Xia Z, Huang T (2015) Detecting Rare Actions and Events from Surveillance Big Data with Bag of Dynamic Trajectories. In: IEEE International Conference on Multimedia Big Data. pp 128–135Google Scholar
  46. 46.
    Wong PC, Chen CM, Gorg C, Shneiderman B, Stasko J, Thomas J (2011) Graph Analytics-Lessons Learned and Challenges Ahead. IEEE Comput Graph Appl 31(5):18–29CrossRefGoogle Scholar
  47. 47.
    Wu L, Wang Y (2010) The process of criminal investigation based on grey hazy set. In: IEEE International Conference on Systems Man and Cybernetics. IEEE, pp 26–28Google Scholar
  48. 48.
    Xie K, Xia C, Grinberg N, Schwartz R, Naaman M (2013) Robust detection of hyper-local events from geotagged social media data. In: Thirteenth International Workshop on Multimedia Data Mining. p 2Google Scholar
  49. 49.
    Xu H, Izrailev S, Agrafiotis DK (2003) Conformational sampling by self-organization. J Chem Inf Comput Sci 43(4):1186–1191CrossRefGoogle Scholar
  50. 50.
    Xu Z, Wei X, Luo X, Liu Y, Mei L, Hu C, Chen L (2015) Knowle: A semantic link network based system for organizing large scale online news events. Futur Gener Comput Syst 43-44:40–50CrossRefGoogle Scholar
  51. 51.
    Zhu W, Cui P, Wang Z, Hua G (2015) Multimedia Big Data Computing. Multimedia IEEE 22(3):96–c93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Business AdministrationUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations