Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1473–1494 | Cite as

Feature selection for image steganalysis using levy flight-based grey wolf optimization

  • Yadunath PathakEmail author
  • K. V. Arya
  • Shailendra Tiwari


Image steganalysis is the process of detecting the availability of hidden messages in the cover images. Therefore, it may be considered as a classification problem which categorizes an image either into a cover images or a stego image. Feature selection is one of the important phases of image steganalysis which can increase its computational efficiency and performance. In this paper, a novel levy flight-based grey wolf optimization has been introduced which is used to select the prominent features for steganalysis algorithm from a set of original features. For the same, SPAM and AlexNet have been used to generate the high dimensional features. Furthermore, the random forest classifier is used to classify the images over selected features into cover images and stego images. The experimental results show that the proposed levy flight-based grey wolf optimization shows preferable convergence precision and effectively reduces the irrelevant and redundant features while maintaining the high classification accuracy as compared to other feature selection methods.


Image steganalysis Feature selection Grey wolf optimization Swarm intelligence 



  1. 1.
    Amirsadri S, Mousavirad SJ, Ebrahimpour-Komleh H (2017) A levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Comput & Applic 28:1–14Google Scholar
  2. 2.
    Bhattacharyya S, Sengupta A, Chakraborti T, Konar A, Tibarewala D (2014) Automatic feature selection of motor imagery eeg signals using differential evolution and learning automata. Med Biol Eng Comput 52:131–139CrossRefGoogle Scholar
  3. 3.
    Chechkin AV, Metzler R, Klafter J, Gonchar VY et al. (2008) Introduction to the theory of lévy flights, Anomalous transport: Foundations and applications 129–162Google Scholar
  4. 4.
    Chen C, Shi YQ (2008) Jpeg image steganalysis utilizing both intrablock and interblock correlations. In: Proc of IEEE international symposium on circuits and systems, pp 3029–3032Google Scholar
  5. 5.
    Chhikara RR, Sharma P, Singh L (2016) A hybrid feature selection approach based on improved pso and filter approaches for image steganalysis. Int J Mach Learn Cybern 7:1195–1206CrossRefGoogle Scholar
  6. 6.
    Chhikara RR, Sharma P, Singh L (2016) An improved dynamic discrete firefly algorithm for blind image steganalysis. Int J Mach Learn Cybern 6:1–15Google Scholar
  7. 7.
    Cotter SF, Kreutz-Delgado K, Rao BD (2001) Backward sequential elimination for sparse vector subset selection. Signal Process 81:1849–1864CrossRefGoogle Scholar
  8. 8.
    Dash M, Liu H (1997) Feature selection for classification. Intelligent Data Analysis 1:131–156CrossRefGoogle Scholar
  9. 9.
    Deepa S (2017) Steganalysis on images using svm with selected hybrid features of gini index feature selection algorithm. Int J Adv Res Comput Sci 8:1503–1509Google Scholar
  10. 10.
    Deng H, Runger G (2012) Feature selection via regularized trees. In: Proc of international joint conference on neural networks, pp 1–8Google Scholar
  11. 11.
    Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18CrossRefGoogle Scholar
  12. 12.
    Dumitrescu S, Wu X, Wang Z (2003) Detection of lsb steganography via sample pair analysis. IEEE Trans Signal Process 51:1995–2007CrossRefGoogle Scholar
  13. 13.
    Emary E, Zawbaa HM, Grosan C, Hassenian AE (2015) Feature subset selection approach by gray-wolf optimization. In: Proc of Afro-European conference for industrial advancement, pp 1–13Google Scholar
  14. 14.
    Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRefGoogle Scholar
  15. 15.
    Fridrich J, Goljan M (2004) On estimation of secret message length in lsb steganography in spatial domain. In: Security, steganography, and watermarking of multimedia contents VI, pp 23–35Google Scholar
  16. 16.
    Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proc of international conference on artificial intelligence and statistics, pp 315–323Google Scholar
  17. 17.
    Guettari N, Capelle-Laizé AS, Carré P (2016) Blind image steganalysis based on evidential k-nearest neighbors. In: Proc of IEEE international conference on image processing, pp 2742–2746Google Scholar
  18. 18.
    Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefGoogle Scholar
  19. 19.
    Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation 4:150–194CrossRefGoogle Scholar
  20. 20.
    Kodovskỳ J, Fridrich J (2009) Calibration revisited. In: Proc of ACM workshop on multimedia and security, pp 63–74Google Scholar
  21. 21.
    Kodovskỳ J, Fridrich J (2011) Steganalysis in high dimensions: fusing classifiers built on random subspaces. In: Media watermarking, security, and forensics III, p 78800LGoogle Scholar
  22. 22.
    Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Forensics Secur 7:432–444CrossRefGoogle Scholar
  23. 23.
    Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324CrossRefGoogle Scholar
  24. 24.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  25. 25.
    Liu Q (2011) Steganalysis of dct-embedding based adaptive steganography and yass. In: Proc of ACM multimedia workshop on multimedia and security, pp 77–86Google Scholar
  26. 26.
    Lu P, Luo X, Tang Q, Li S (2004) An improved sample pairs method for detection of lsb embedding. In: Information hiding, vol 3200. Springer, pp 116–127Google Scholar
  27. 27.
    Luo X-Y, Wang D-S, Wang P, Liu F-L (2008) A review on blind detection for image steganography. Signal Process 88:2138–2157CrossRefGoogle Scholar
  28. 28.
    Massart DL, Smeyers-verbeke AJ et al. (2005) Visual presentation of data by means of box plots, Practical data handling. LC-GC Europe 18:215–218Google Scholar
  29. 29.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  30. 30.
    Mohammadi FG, Abadeh MS (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43CrossRefGoogle Scholar
  31. 31.
    Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-gaussian radial basis functional-link nets. In: Proc of international conference on computer science and engineering, pp 209–214Google Scholar
  32. 32.
    Nissar A, Mir A (2010) Classification of steganalysis techniques: a study. Digital Signal Process 20:1758–1770CrossRefGoogle Scholar
  33. 33.
    Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensics Secur 5:215–224CrossRefGoogle Scholar
  34. 34.
    Pevnỳ T, Fridrich J (2005) Towards multi-class blind steganalyzer for jpeg images. In: Proc of international workshop on digital watermarking, pp 39–53Google Scholar
  35. 35.
    Pevny T, Fridrich J (2007) Merging markov and dct features for multi-class jpeg steganalysis. In: Proc of electronic imaging, pp 650503–650503Google Scholar
  36. 36.
    Qin C, Chang C-C, Hsu T-J (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools and Applications 74:5861–5872CrossRefGoogle Scholar
  37. 37.
    Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23:1109–1118CrossRefGoogle Scholar
  38. 38.
    Ramezani M, Ghaemmaghami S (2010) Towards genetic feature selection in image steganalysis. In: Proc of IEEE consumer communications and networking conference, pp 1–4Google Scholar
  39. 39.
    Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inform Sci 179:2232–2248CrossRefGoogle Scholar
  40. 40.
    Saraswat M, Arya K (2014) Feature selection and classification of leukocytes using random forest. Med Biol Eng Comput 52:1041–1052CrossRefGoogle Scholar
  41. 41.
    Saraswat M, Arya K, Sharma H (2013) Leukocyte segmentation in tissue images using differential evolution algorithm. Swarm Evol Comput 11:46–54CrossRefGoogle Scholar
  42. 42.
    Sheikhan M, Pezhmanpour M, Moin MS (2012) Improved contourlet-based steganalysis using binary particle swarm optimization and radial basis neural networks. Neural Comput & Applic 21:1717–1728CrossRefGoogle Scholar
  43. 43.
    Simon D (2013) Evolutionary optimization algorithms. Wiley, HobokenGoogle Scholar
  44. 44.
    Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, New YorkzbMATHGoogle Scholar
  45. 45.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102CrossRefGoogle Scholar
  46. 46.
    Zhang T, Ping X (2003) A new approach to reliable detection of lsb steganography in natural images. Signal Process 83:2085–2093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yadunath Pathak
    • 1
    Email author
  • K. V. Arya
    • 1
  • Shailendra Tiwari
    • 2
  1. 1.Multimedia and Information Security LabAtal Bihari Vajpayee Indian Institute of Information Technology and ManagementGwaliorIndia
  2. 2.Thapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations