Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 23, pp 30703–30727 | Cite as

A level set method based on local direction gradient for image segmentation with intensity inhomogeneity

  • Yingran Ma
  • Yanjun Peng
Article
  • 133 Downloads

Abstract

Many medical and real images are suffered from intensity inhomogeneity and weak edges. For higher image segmentation quality, lots of level set-based methods have been proposed. Some of them however cannot take advantage of image gradient information. And severe intensity inhomogeneity and weak edges are not disposed properly. To address these problems, a new level set method integrated with local direction gradient information is presented in this paper. Firstly, according to the two assumptions on image intensity inhomogeneity adopted by many existing methods, a new pixel classification model based on image gradient is introduced. Secondly, we employ variational level set method combined with image spatial information, which improves the anti-noise capability of the proposed method. Finally, considering the gray gradients in homogeneous regions are close to constants, an improved diffusion process is incorporated into the level set function to make the evolving curves stay around true image edges. To verify our method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Keywords

Image segmentation Image gradient Level set method Intensity inhomogeneity 

Notes

Acknowledgements

This work is supported by the National key research and development project of China under Grant No.2016YFC0801406, the Natural Science Foundation of Shandong Province under Grant No. ZR2015FM013, the National Natural Science Foundation of China under Grant No. 61502279, the National key research and development project of the Shandong Province under Grant No. 2016GSF120012, and by Special Project Fund of Taishan Scholars of Shandong Province, Leading Talent Project of Shandong University of Science and Technology.

References

  1. 1.
    Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199CrossRefGoogle Scholar
  2. 2.
    Bresson X, Esedoglu S, Vandergheynst P, Thiran J-P, Osher S (2005) Fast global minimization of the active contours/snake model. Journal of Mathematical Imaging and Vision 28(2):151–167MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bresson X, Esedoglu S, Vandergheynst P, Thiran J-P, Osher S (2005) Global minimizers of the active contour/snake model. UCLA CAM Report 05–04Google Scholar
  4. 4.
    Brox T, Cremers D (2009) On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional. Int J Comput Vis 84(2):184–193CrossRefGoogle Scholar
  5. 5.
    Caselles V, Catte F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66(1):1–31MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79zbMATHCrossRefGoogle Scholar
  7. 7.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277zbMATHCrossRefGoogle Scholar
  8. 8.
    Chang H, Huang W, Wu C, Huang S, Guan C, Sekar S, Bhakoo KK, Duan Y (2017) A new variational method for bias correction and its applications to rodent brain extraction. IEEE Trans Med Imaging 36(3):721–733CrossRefGoogle Scholar
  9. 9.
    Chen SC, Zhang DQ (2004) Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Transactions on Systems Man Cybernet 34:1907–1916CrossRefGoogle Scholar
  10. 10.
    Chopp D (1993) Computing minimal surface via level set curvature flow. J Comput Phys 106(1):77–91MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chuang KS, Tzeng H-L, Chen S, Wu J, Chen T-J (2006) Fuzzy C-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15CrossRefGoogle Scholar
  12. 12.
    Duan Y, Chang H, Huang W, Zhou J, Lu Z, Wu C (2015) The L0 regularized Mumford-Shah model for bias correction and segmentation of medical images. IEEE Trans Image Process. 24(11):3927–3938MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang J, You XG, Tang YY et al (2009) A novel iris segmentation using radial-suppression edge detection. Signal Process 89(12):2630–2643zbMATHCrossRefGoogle Scholar
  14. 14.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331zbMATHCrossRefGoogle Scholar
  15. 15.
    Konyushkova K, Sznitman R, Fua P (2015) Introducing geometry in active learning for image segmentation. IEEE International Conference on Computer Vision, pp 2974–2982Google Scholar
  16. 16.
    Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17(11):2029–2039MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: A new variational formulation. IEEE Conf Comput Vis Pattern Recognit 1:430–436Google Scholar
  18. 18.
    Li C, Kao C-Y, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. IEEE Conference on Computer Vision & Pattern Recognition, pp 1–7Google Scholar
  19. 19.
    Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923CrossRefGoogle Scholar
  22. 22.
    Likar B, Viergever MA, Pernus F (2001) Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 20(12):1398–1410CrossRefGoogle Scholar
  23. 23.
    Liu Y, Nie LQ, Han L et al (2016) Action2activity: recognizing complex activities from sensor data. Proceedings of the twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI), pp 1617–1623Google Scholar
  24. 24.
    Liu Y, Nie LQ, Liu L et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  25. 25.
    Liu Y, Zheng Y, Liang YX et al (2016) Urban water quality prediction based on multi-task multi-view learning. Proceedings of the twenty-fifth international joint conference on artificial intelligence, pp 2576–2582Google Scholar
  26. 26.
    Liu Y, Zhang LM, Nie LQ et al (2016) Fortune teller: predicting your career path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAAI), pp 201–207Google Scholar
  27. 27.
    Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Peng D, Merriman B, Osher S, Zhao H, Kang M, PDE-based A (1999) fast local level set method. J Comput Phys 155(2):410–438MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876CrossRefGoogle Scholar
  30. 30.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159zbMATHCrossRefGoogle Scholar
  31. 31.
    Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):371–293zbMATHCrossRefGoogle Scholar
  32. 32.
    Wang LF, Huang J, Lav B et al (2017) MR images segmentation and bias correction via LIC model. IEEE International Conference on Image Processing (ICIP), pp 4412–4416Google Scholar
  33. 33.
    Xie X (2010) Active contouring based on gradient vector interaction and constrained level set diffusion. IEEE Trans Image Process 19(1):154–164MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xu YD, Cui JS, Zhao HJ et al (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern B 43(4):996–1002CrossRefGoogle Scholar
  35. 35.
    Yang Y, Xu D, Nie FP et al (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19(10):2761–2773MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Yang Y, Ma ZG, Nie FP et al (2015) Multi-class active learning by uncertainty sampling with diversity maximization. Int J Comput Vis 113(2):113–127MathSciNetCrossRefGoogle Scholar
  37. 37.
    You XG, Peng QM, Yuan Y et al (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10–11):2314–2324CrossRefGoogle Scholar
  38. 38.
    Yu SJ, Mou Y, Xu DQ et al (2013) A new algorithm for shoreline extraction from satellite imagery with non-separable wavelet and level set method. International Journal of Machine Learning and Computing 3(1):158–163CrossRefGoogle Scholar
  39. 39.
    Zhang K, Zhang L, Song H, Zhang D (2013) Reinitialization-free level set evolution via reaction diffusion. IEEE Trans Image Process 22(1):258–270MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zhang K, Zhang L, Lam K-M, Zhang D (2016) A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics 46(2):546–557CrossRefGoogle Scholar
  41. 41.
    Zhao HK, Chan T, Merriman B et al (1996) A variational level-set approach to multiphase motion. J Comput Phys 127:179–195MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Shandong Province Key Laboratory of Wisdom Mining Information TechnologyShandong University of Science and TechnologyQingdaoChina

Personalised recommendations