Personality trait and group emotion contagion based crowd simulation for emergency evacuation

  • Yan Mao
  • Shanwen Yang
  • Zuning Li
  • Yongjian LiEmail author


Most of current crowd simulation methods have considered the impact of interindividual emotion on the agent’s behavior pattern during emergency evacuations. However, the emotion contagion is not only at the individual level, but also at the contagion in groups. Psychological researches show that the third-party authority also has an impact on emotion contagion. For example, security guards can guide individuals to find exits and calms them; and teachers can lead their students safely evacuate from multi-layer teaching buildings, etc. In this paper, we propose a unified framework to simulate the emergency evacuations in virtual environment. This framework considers four kinds of agents: third-party authority agents, group leaders, members and isolated agents. Firstly, we randomly assign each agent a specific personality and initialize its emotion. Secondly, the emotion contagion in this paper is considered with three aspects: intra-group contagion, inter-group contagion and third-party authority based emotion contagion. We simulate inter-group aggregated behaviors by improving the ASCRIBE and provide a threshold model to simulate inter-group switching behaviors. The third-party authorities exhibit a calm effect on the agents during an evacuation, and we set their negative emotion very low and keep unchanged. Meanwhile, we perform high-level path planning to explore the environments and obtain a cognitive map for navigation purposes. Through quantitative and qualitative experiments, simulation results demonstrate that our proposed model can simulate the emotion contagion in groups during emergency evacuations, and our model outperforms some existing works.


Emotion contagion Crowd simulation Emergency evacuation Group behavior Inter-group Intra-group 


Supplementary material

11042_2018_6069_MOESM1_ESM.mp4 (7.2 mb)
ESM 1 (MP4 7339 kb)
11042_2018_6069_MOESM2_ESM.mp4 (5.3 mb)
ESM 2 (MP4 5388 kb)
11042_2018_6069_MOESM3_ESM.mp4 (4.2 mb)
ESM 3 (MP4 4305 kb)
11042_2018_6069_MOESM4_ESM.mp4 (5.7 mb)
ESM 4 (MP4 5845 kb)
11042_2018_6069_MOESM5_ESM.mp4 (5.1 mb)
ESM 5 (MP4 5239 kb)
11042_2018_6069_MOESM6_ESM.mp4 (9 mb)
ESM 6 (MP4 9166 kb)
11042_2018_6069_MOESM7_ESM.mp4 (5.6 mb)
ESM 7 (MP4 5772 kb)
11042_2018_6069_MOESM8_ESM.mp4 (4 mb)
ESM 8 (MP4 4057 kb)
11042_2018_6069_MOESM9_ESM.mp4 (3.4 mb)
ESM 9 (MP4 3484 kb)
11042_2018_6069_MOESM10_ESM.mp4 (3.1 mb)
ESM 10 (MP4 3158 kb)
11042_2018_6069_MOESM11_ESM.mp4 (3.8 mb)
ESM 11 (MP4 3892 kb)
11042_2018_6069_MOESM12_ESM.mp4 (2.2 mb)
ESM 12 (MP4 2206 kb)
11042_2018_6069_MOESM13_ESM.mp4 (3.5 mb)
ESM 13 (MP4 3584 kb)
11042_2018_6069_MOESM14_ESM.mp4 (3.5 mb)
ESM 14 (MP4 3624 kb)
11042_2018_6069_MOESM15_ESM.mp4 (4.5 mb)
ESM 15 (MP4 4613 kb)
11042_2018_6069_MOESM16_ESM.mp4 (2.8 mb)
ESM 16 (MP4 2844 kb)
11042_2018_6069_MOESM17_ESM.mp4 (2.2 mb)
ESM 17 (MP4 2285 kb)
11042_2018_6069_MOESM18_ESM.mp4 (2.3 mb)
ESM 18 (MP4 2304 kb)
11042_2018_6069_MOESM19_ESM.mp4 (3.1 mb)
ESM 19 (MP4 3143 kb)
11042_2018_6069_MOESM20_ESM.mp4 (1.8 mb)
ESM 20 (MP4 1878 kb)
11042_2018_6069_MOESM21_ESM.mp4 (1.8 mb)
ESM 21 (MP4 1867 kb)
11042_2018_6069_MOESM22_ESM.mp4 (3.1 mb)
ESM 22 (MP4 3171 kb)
11042_2018_6069_MOESM23_ESM.mp4 (2.1 mb)
ESM 23 (MP4 2115 kb)


  1. 1.
    Barsade SG (2002) The ripple effect: emotional contagion and its influence on group behavior. Adm Sci Q 47:644–675. CrossRefGoogle Scholar
  2. 2.
    Barsade SG, Gibson DE (1998) Group emotion: a view from top and bottom. Research on managing groups and teams 1:81–102Google Scholar
  3. 3.
    BBC news (2015) Shanghai new year crush kills 36. BBC News. Accessed 1 Jan 2015
  4. 4.
    Bellomo N, Gibelli L (2016) Behavioral crowds: modeling and Monte Carlo simulations toward validation. Comput Fluids 141:13–21. MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellomo N, Clarke D, Gibelli L, Townsend P, Vreugdenhil B (2016) Human behaviours in evacuation crowd dynamics: from modelling to “big data” toward crisis management. Phys Life Rev 18:1–21. CrossRefGoogle Scholar
  6. 6.
    BNO news (2016) Oromia: Stampede at Ethiopia protest leaves 52 dead. BBC News. Accessed 3 Oct 2016
  7. 7.
    BNO news (2017) Panic erupts during Champions League viewing in Italy, injuring 1,500. BNO News. Accessed 3 June 2017
  8. 8.
    Bosse T, Duell R, Memon ZA, Treur J, van der Wal CN (2015) Agent based modeling of emotion contagion in groups. Cogn Comput 7:111–136. CrossRefGoogle Scholar
  9. 9.
    Bruneau J, Olivier A-H, Pettre J (2015) Going through, going around: a study on individual avoidance of groups. IEEE Trans Vis Comput Graph 21:520–528. CrossRefGoogle Scholar
  10. 10.
    Cao M, Zhang G, Wang M, Lu D, Liu H (2017) A method of emotion contagion for crowd evacuation. Physica A: Statistical Mechanics and its Applications 483:250–258. CrossRefGoogle Scholar
  11. 11.
    Doulamis N (2009) Evacuation planning through cognitive crowd tracking. In: Systems, Signals and Image Processing 16th International Conference on: 1–4. doi:10.1109/IWSSIP.2009.5367704Google Scholar
  12. 12.
    Doulamis N, Doulamis A, Makantasis K, Karantzalos K, Loupos K (2015) Micro-scale thermal behavioral analysis for active evacuation routes. Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments 50:51–54. Google Scholar
  13. 13.
    Durupinar F, Pelechano N, Allbeck J, Gudukbay U, Badler NI (2011) How the ocean personality model affects the perception of crowds. IEEE Comput Graph Appl 31:22–31. CrossRefGoogle Scholar
  14. 14.
    Durupınar F, Güdükbay U, Aman A, Badler NI (2016) Psychological parameters for crowd simulation: from audiences to mobs. IEEE Trans Vis Comput Graph 22:2145–2159. CrossRefGoogle Scholar
  15. 15.
    Eysenck HJ (1991) Dimensions of personality. In: Explorations in temperament. Springer 87–103. doi:10.1007/978-1-4899-0643-4_7Google Scholar
  16. 16.
    Faroqi H, Mesgari M-S (2015) Agent based crowd simulation considering emotion contagion for emergency evacuation problem. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40:193. CrossRefGoogle Scholar
  17. 17.
    Gebhard P (2005) ALMA: a layered model of affect. In: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems 29–36. doi:10.1145/1082473.1082478Google Scholar
  18. 18.
    Guy SJ, Kim S, Lin MC, Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation 43–52. doi:10.1145/2019406.2019413Google Scholar
  19. 19.
    Hatfield E, Cacioppo JT, Rapson RL (1993) Emotional contagion. Curr Dir Psychol Sci 2:96–100CrossRefGoogle Scholar
  20. 20.
    He W, Chen JX, Zhang W (2016) Crowd simulation using DC model and density information. Multimedia Tools and Applications 75:5981–5998. CrossRefGoogle Scholar
  21. 21.
    Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286. CrossRefGoogle Scholar
  22. 22.
    Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490. CrossRefGoogle Scholar
  23. 23.
    Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res B Methodol 36:507–535. CrossRefGoogle Scholar
  24. 24.
    Jaklin N, Kremyzas A, Geraerts R (2015) Adding sociality to virtual pedestrian groups. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology 163–172. doi:10.1145/2821592.2821597Google Scholar
  25. 25.
    Kim S, Guy SJ, Manocha D, Lin MC (2012) Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games 55–62. doi:10.1145/2159616.2159626Google Scholar
  26. 26.
    Kim S, Guy SJ, Manocha D (2013) Velocity based modeling of physical interactions in multi-agent simulations. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics symposium on computer animation:125–133. doi:10.1145/2485895.2485910Google Scholar
  27. 27.
    Mehrabian A (1996) Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr Psychol 14:261–292. MathSciNetCrossRefGoogle Scholar
  28. 28.
    Narain R, Golas A, Curtis S, Lin MC (2009) Aggregate dynamics for dense crowd simulation. ACM Transactions on Graphics (TOG) 28(122):121–128. Google Scholar
  29. 29.
    O'Connor S, Liarokapis F, Jayne C (2015) Perceived realism of crowd behaviour with social forces. In: Information Visualisation (iV), 2015 19th International Conference on: 494–499. doi:10.1109/iV.2015.88Google Scholar
  30. 30.
    Ortony A, Clore GL, Collins A (1990) The cognitive structure of emotions. Cambridge university pressGoogle Scholar
  31. 31.
    Park SI, Quek F, Cao Y (2012) Modeling social groups in crowds using common ground theory. In: Simulation Conference (WSC), Proceedings of the 2012 Winter 1–12. doi:10.1109/WSC.2012.6465119Google Scholar
  32. 32.
    Pelechano N, O'Brien K, Silverman B, Badler N (2005) Crowd simulation incorporating agent psychological models, roles and communication. A: International Workshop on Crowd Simulation. First International Workshop on Crowd Simulation 1–10Google Scholar
  33. 33.
    Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation 99–108Google Scholar
  34. 34.
    Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH computer graphics 21:25–34. CrossRefGoogle Scholar
  35. 35.
    Sabeur Z, Doulamis N, Middleton L, Arbab-Zavar B, Correndo G, Amditis A (2015) Multi-modal computer vision for the detection of multi-scale crowd physical motions and behavior in confined spaces. In: International Symposium on Visual Computing: 162–173. doi:10.1007/978-3-319-27857-5_15Google Scholar
  36. 36.
    Sinclair J, Lui CSM (2015) Integrating personality and emotion for human crowd simulation. In: The Fifteenth International Conference on Electronic Business: 300–307Google Scholar
  37. 37.
    Staff BP (2015) PM Modi condoles loss of Lives during Stampede at Mina in Saudi Arabia. Biharprabha News Copyright. Accessed 24 Sept 2015
  38. 38.
    Stamatopoulou I, Sakellariou I, Kefalas P (2012) Formal agent based modelling and simulation of crowd behaviour in emergency evacuation plans. In: Tools with Artificial Intelligence (ICTAI), 2012 I.E. 24th International Conference on 1:1133–1138. doi:10.1109/ICTAI.2012.161Google Scholar
  39. 39.
    Sung M, Gleicher M, Chenney S (2004) Scalable behaviors for crowd simulation. In:. Computer Graphics Forum 23:519–528. CrossRefGoogle Scholar
  40. 40.
    Taffou M, Ondřej J, O’Sullivan C, Warusfel O, Viaud-Delmon I (2017) Judging crowds’ size by ear and by eye in virtual reality. Journal on Multimodal User Interfaces 11:57–65. CrossRefGoogle Scholar
  41. 41.
    Treuille A, Cooper S, Popović Z (2006) Continuum crowds. In: ACM Transactions on Graphics (TOG) 25:1160–1168. doi:10.1145/1141911.1142008Google Scholar
  42. 42.
    Tsai J, Fridman N, Bowring E, Brown M, Epstein S, Kaminka G, Marsella S, Ogden A, Rika I, Sheel A (2011) ESCAPES: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: The 10th International Conference on Autonomous Agents and Multiagent Systems 2:457–464Google Scholar
  43. 43.
    Van Toll WG, Cook AF, Geraerts R (2012) Real-time density-based crowd simulation. Computer Animation and Virtual Worlds 23:59–69. CrossRefGoogle Scholar
  44. 44.
    Vicovaro M, Hoyet L, Burigana L, O'sullivan C (2014) Perceptual evaluation of motion editing for realistic throwing animations. ACM Transactions on Applied Perception (TAP) 10:1–23. Google Scholar
  45. 45.
    Vreugdenhil B, Bellomo N, Townsend PS (2015) Using Crowd Modelling in Evacuation Decision Making. ISCRAMGoogle Scholar
  46. 46.
    Wang H, Ondřej J, O'Sullivan C (2016) Path patterns: Analyzing and comparing real and simulated crowds. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games:49–57. doi:10.1145/2856400.2856410Google Scholar
  47. 47.
    Wiggins JS (1996) The five-factor model of personality: Theoretical perspectives. Guilford PressGoogle Scholar
  48. 48.
    Winch J, and Sherwell P, Editor A, Latifi A (2015) 12 schoolgirls trampled to death in Afghanistan earthquake. Telegraph. Accessed 26 Oct 2015
  49. 49.
    Wong SK, Tang PK, Li FS, Wang ZM, Yu ST (2015) Guidance path scheduling using particle swarm optimization in crowd simulation. Computer Animation and Virtual Worlds 26:387–395. CrossRefGoogle Scholar
  50. 50.
    Yin Y, Tang W, Li W (2012) Modeling Group Emotion Based on Emotional Contagion. In: Intelligent Information Processing VI 240–247Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication July/2018

Authors and Affiliations

  • Yan Mao
    • 1
  • Shanwen Yang
    • 2
    • 3
  • Zuning Li
    • 2
    • 3
  • Yongjian Li
    • 1
    Email author
  1. 1.School of Economics and ManagementSouthwest Jiaotong UniversityChengduChina
  2. 2.College of Movie and MediaSichuan Normal UniversityChengduChina
  3. 3.Visual Computing and Virtual Reality Key Laboratory of Sichuan ProvinceSichuan Normal UniversityChengduChina

Personalised recommendations