Multimedia Tools and Applications

, Volume 77, Issue 23, pp 30505–30532 | Cite as

Texture description using multi-scale morphological GLCM

  • Mudassir RafiEmail author
  • Susanta Mukhopadhyay


Texture is the collective repetitive pattern that characterizes the surface of real world objects. The main challenge in the texture description is its application specific definition. The present work aims at bringing the definition of textures under a generalized framework and propose some texture descriptors. In order to accomplish this, authors have extensively studied the properties of texture, drawn four observations and used some of them to devise two texture descriptors under the framework of multi-scale mathematical morphology and co-occurrence matrices. Thereafter, the descriptors are used for texture classification and tested on three benchmark datasets. Before applying the descriptors to texture classification, a dependence between number of decomposition levels (scales) and classification percentage is established using hypothesis testing. Once the dependence is established, the corresponding scale and distance parameter is chosen for each dataset. The classification results are compared with a number of existing methods. The efficacy of results prove the supremacy of the proposed methods over the existing ones.


Texture description Feature extraction Texture classification 


Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Ando S (2000) Image segmentation and feature extraction. PAMI 22(3):320–333CrossRefGoogle Scholar
  2. 2.
    Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV 2006. Springer, pp 404–417Google Scholar
  3. 3.
    Berg AC, Malik J (2006) Shape matching and object recognition. SpringerGoogle Scholar
  4. 4.
    Bormann R, Esslinger D, Hundsdoerfer D, Haegele M, Vincze M (2016) Texture characterization with semantic attributes: database and algorithm. In: ISR 2016: 47st International symposium on robotics; proceedings of VDE, pp 1-8Google Scholar
  5. 5.
    Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on image and video retrieval. ACM, pp 401–408Google Scholar
  6. 6.
    Brodatz P (1966) Textures: a photographic album for artists and designers. Dover PubnsGoogle Scholar
  7. 7.
    Chi J, Eramian M (2017) Enhancing textural differences using wavelet-based texture characteristics morphological component analysis: a preprocessing method for improving image segmentation. Computer Vision and Image UnderstandingGoogle Scholar
  8. 8.
    Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. 2014 2014 IEEE Conference on IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 3606–3613Google Scholar
  9. 9.
    Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 1:25–39CrossRefGoogle Scholar
  10. 10.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer society conference on computer vision and pattern recognition, 2005. CVPR 2005. vol 1. IEEE, pp 886-893Google Scholar
  11. 11.
    Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2 (7):1160–1169CrossRefGoogle Scholar
  12. 12.
    de Siqueira FR, Schwartz WR, Pedrini H (2013) Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120:336–345CrossRefGoogle Scholar
  13. 13.
    Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 9:891–906CrossRefGoogle Scholar
  14. 14.
    Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179CrossRefGoogle Scholar
  15. 15.
    Gonzalez RC et al. (1992) Re woods, digital image processing. Addison–Wesely Publishing CompanyGoogle Scholar
  16. 16.
    Guo Z, Wang X, Zhou J, You J (2016) Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Process 25(2):687–699MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hanbury A, Kandaswamy U, Adjeroh DA (2005) Illumination-invariant morphological texture classification. In: Mathematical morphology: 40 years on. Springer, pp 377–386Google Scholar
  18. 18.
    Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804CrossRefGoogle Scholar
  19. 19.
    Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRefGoogle Scholar
  20. 20.
    Hawkins JK (1970) Textural properties for pattern recognition. Picture Process Psychopictorics, 347–370Google Scholar
  21. 21.
    He DC, Wang L (1990) Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci Remote Sensing 28(4):509–512CrossRefGoogle Scholar
  22. 22.
    Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: 1997 IEEE Computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 762?-768Google Scholar
  23. 23.
    Jain AK, Farrokhnia F (1990) Unsupervised texture segmentation using gabor filters. In: IEEE International conference on systems, man and cybernetics, 1990. Conference Proceedings. IEEE, pp 14–19Google Scholar
  24. 24.
    Jeulin D (2016) Morphological probabilistic hierarchies for texture segmentation. Math Morphol-Theory Appl 1(1):216–234Google Scholar
  25. 25.
    Kurmyshev E, Cervantes M (1996) A quasi-statistical approach to digital binary image representation. Revista Mexicana de Fí,sica 42(1):104–116MathSciNetzbMATHGoogle Scholar
  26. 26.
    Liu L, Chen J, Fieguth P, Zhao G, Chellappa R, Pietikainen M (2018) A survey of recent advances in texture representation. arXiv:180110324
  27. 27.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mao J, Jain AK (1992) Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn 25(2):173–188CrossRefGoogle Scholar
  29. 29.
    Mehta R, Egiazarian K (2016) Dominant rotated local binary patterns (drlbp) for texture classification. Pattern Recogn Lett 71:16–22CrossRefGoogle Scholar
  30. 30.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630CrossRefGoogle Scholar
  31. 31.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59CrossRefGoogle Scholar
  32. 32.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  33. 33.
    Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors. In: Proceedings of the fourth ACM international conference on multimedia. ACM, pp 65–73Google Scholar
  34. 34.
    Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell 4:518–523CrossRefGoogle Scholar
  35. 35.
    Petrou M, Sevilla PG (2006) Image processing: dealing with texture csipCrossRefGoogle Scholar
  36. 36.
    Qian X, Hua XS, Chen P, Ke L (2011) Plbp: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recogn 44(10):2502–2515CrossRefGoogle Scholar
  37. 37.
    Qian X, Guo D, Hou X, Li Z, Wang H, Liu G, Wang Z (2014) Hwvp: hierarchical wavelet packet descriptors and their applications in scene categorization and semantic concept retrieval. Multimed Tools Appl 69(3):897–920CrossRefGoogle Scholar
  38. 38.
    Richards W, Polit A (1974) Texture matching. Kybernetik 16(3):155–162CrossRefGoogle Scholar
  39. 39.
    Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265MathSciNetCrossRefGoogle Scholar
  40. 40.
    Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32CrossRefGoogle Scholar
  41. 41.
    Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473CrossRefGoogle Scholar
  42. 42.
    Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor for detection and classification. In: Computer Vision–ECCV 2006. Springer, pp 589–600Google Scholar
  43. 43.
    Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang D, Haese-Coat V, Bruno A, Ronsin J (1993) Texture classification and segmentation based on iterative morphological decomposition. J Vis Commun Image Represent 4(3):197–214CrossRefGoogle Scholar
  45. 45.
    Werman M, Peleg S (1985) Min-max operators in texture analysis. IEEE Trans Pattern Anal Mach Intell 6:730–733CrossRefGoogle Scholar
  46. 46.
    Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: Tenth IEEE International conference on computer vision, 2005. ICCV 2005, vol 1. IEEE, pp 90–97Google Scholar
  47. 47.
    Xue J, Zhang H, Dana K, Nishino K (2017) Differential angular imaging for material recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 5Google Scholar
  48. 48.
    Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE International conference on computer vision, 2005. ICCV 2005, vol 1. IEEE, pp 786–791Google Scholar
  49. 49.
    Zucker S, Kant K (1981) Multiple-level representations for texture discrimination. In: Conference on pattern recognition and image processing. Dallas, pp 609–614Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations