Multimedia Tools and Applications

, Volume 77, Issue 20, pp 27709–27732 | Cite as

Super-resolution via supervised classification and independent dictionary training

  • Ronggui Wang
  • Qinghui Wang
  • Juan YangEmail author
  • Lixia Xue
  • Min Hu


Super-resolution (SR) reconstruction plays an important role in recovering the image details and improving the visual perception. In this paper, we propose a new and effective method based on the idea of classification reconstruction and independent dictionary training. Firstly, we extract some geometric features of images and design a new supervised classification method, which uses the decision tree to guarantee a better classification result. Secondly, the coefficients of the high-resolution (HR) and low-resolution (LR) patches are not equal strictly in fact, which enlighten us to train the HR and LR dictionaries independently. And then mapping matrices are learned to map LR coefficients into HR coefficients, which can not only help us improve reconstruction quality, but also just perform sparse coding one time in the reconstruction stage. At last, we enforce a global optimization on the initial reconstruction HR image based on the non-local means and the auto-regressive model. The experiments show that the method we proposed works better than other classic state-of-the-art methods.


Independent dictionary training Decision tree Mapping function Super-resolution Sparse coding 



This work is partly supported by the National Natural Science Foundation of China under Project code (61672202).


  1. 1.
    Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRefGoogle Scholar
  2. 2.
    Allebach J, Wong PW (1996) Edge-directed interpolation. International conference on image processing, 1996. Proceedings IEEE Xplore, vol 3, pp 707–710Google Scholar
  3. 3.
    Bevilacqua M, Roumy A, Guillemot C, Alberi Morel M-L (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC, Guildford, pp 1–10Google Scholar
  4. 4.
    Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of the 2004 I.E. computer society conference on IEEE Xplore, vol 1, pp I-275-I-282Google Scholar
  5. 5.
    Dai S et al (2009) SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 18(5):969–981MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on IEEE, pp 886–893Google Scholar
  7. 7.
    Dong C, Chen CL, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Proceedings of European Conference on Computer Vision (ECCV). Springer, Cham, pp 184–199Google Scholar
  8. 8.
    Dong W et al (2011) Sparsity-based image denoising via dictionary learning and structural clustering. IEEE conference on computer vision and pattern recognition IEEE computer society, pp 457–464Google Scholar
  9. 9.
    Dong W et al (2011) Image Deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process Publ IEEE Signal Process Soc 207:1838–1857MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRefGoogle Scholar
  11. 11.
    Ducournau A, Fablet R (2016) Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data. 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Cancun, pp 1–6Google Scholar
  12. 12.
    Edelman A (1988) Eigenvalues and condition numbers of random matrices. SIAM J Matrix Anal Appl 9(4):543–560MathSciNetCrossRefGoogle Scholar
  13. 13.
    Feng XG, Milanfar P (2003) Multiscale principal components analysis for image local orientation estimation. In: Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers. University of California, Santa Cruz, pp 478–482Google Scholar
  14. 14.
    Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. Comput Graph Appl IEEE 22(2):56–65CrossRefGoogle Scholar
  15. 15.
    Huang J, You X, Yuan Y, Yang F, Lin L (2010) Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet. Neurocomputing 73(4):883–894CrossRefGoogle Scholar
  16. 16.
    Jiang J et al (2016) Noise robust position-patch based face super-resolution via Tikhonov regularized neighbor representation. Inf Sci 367–368:354–372CrossRefGoogle Scholar
  17. 17.
    Jiang J et al (2016) Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means. IEEE Trans Multimedia 19(1):15–26CrossRefGoogle Scholar
  18. 18.
    Jiang J, Chen C, Ma J, Wang Z, Wang Z, Hu R (2017) SRLSP: a face image super-resolution algorithm using smooth regression with local structure prior. IEEE Trans Multimedia 19(1):27–40CrossRefGoogle Scholar
  19. 19.
    Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process Publ IEEE Signal Process Soc 10(10):1521–1527Google Scholar
  20. 20.
    Liu H, Han J, Hou S, Shao L, Ruan Y (2017) Single image super-resolution using a deep encoder-decoder symmetrical network with iterative back projection. Neurocomputing 282:52–59CrossRefGoogle Scholar
  21. 21.
    Lowe DG (2004) Distinctive image features from scale-invariant Keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  22. 22.
    Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration (PREPRINT). Siam J Multiscale Model Simul 7(1):214–241CrossRefGoogle Scholar
  23. 23.
    Protter M, Elad M, Takeda H, Milanfar P (2009) Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans Image Process Publ IEEE Signal Process Soc 18(1):36–51MathSciNetCrossRefGoogle Scholar
  24. 24.
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefGoogle Scholar
  25. 25.
    Rubinstein R, Zibulevsky M, Elad M (2008) Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Cs Technion 40(8):1–15Google Scholar
  26. 26.
    Sun J, Xu Z, Shum HY (2008) Image super-resolution using gradient profile prior. Computer vision and pattern recognition, 2008. CVPR 2008. IEEE Conference on IEEE, pp 1–8Google Scholar
  27. 27.
    Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366MathSciNetCrossRefGoogle Scholar
  28. 28.
    Timofte R, De V, Gool LV (2013) Anchored neighborhood regression for fast example-based super-resolution. IEEE international conference on computer vision IEEE, pp 1920–1927Google Scholar
  29. 29.
    Timofte R, Smet VD, Gool LV (2014) A+: adjusted anchored neighborhood regression for fast super-resolution. Lect Notes Comput Sci 9006:111–126CrossRefGoogle Scholar
  30. 30.
    Uiboupin T, Rasti P, Anbarjafari G, Demirel H (2016) Facial image super resolution using sparse representation for improving face recognition in surveillance monitoring. 2016 24th Signal Processing and Communication Application Conference (SIU). Zonguldak, pp 437–440Google Scholar
  31. 31.
    Wang YH, Li JB, Fu P (2012) Medical image super-resolution analysis with sparse representation. Eighth international conference on intelligent information hiding and multimedia signal processing IEEE computer society, pp 106–109Google Scholar
  32. 32.
    Wang S et al (2012) Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. IEEE Conference on Computer Vision and PatternRecognition, Providence, RI 157(10):2216–2223Google Scholar
  33. 33.
    Wang L, Lu K, Liu P (2015) Compressed sensing of a remote sensing image based on the priors of the reference image. IEEE Geosci Remote Sens Lett 12(4):736–740CrossRefGoogle Scholar
  34. 34.
    Wang Z, Yang Y, Wang Z, Chang S, Yang J, Huang TS (2015) Learning super-resolution jointly from external and internal examples. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(11):4359–4371MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. 2015 I.E. International Conference on Computer Vision (ICCV). Santiago, pp 370–378Google Scholar
  36. 36.
    Xu J, Qi C, Chang Z (2015) Coupled K-SVD dictionary training for super-resolution. IEEE international conference on image processing IEEE, pp 3910–3914Google Scholar
  37. 37.
    Yang J et al (2008) Image super-resolution as sparse representation of raw image patches. Computer vision and pattern recognition, 2008. CVPR 2008. IEEE Conference on IEEE, pp 1–8Google Scholar
  38. 38.
    Yang J et al (2010) Image super-resolution via sparse representation. IEEE Trans Image Process Publ IEEE Signal Process Soc 19(11):2861–2873MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yang S et al (2011) Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning. International workshop on multi-platform/multi-sensor remote sensing and mapping IEEE, pp 1–6Google Scholar
  40. 40.
    Yang S, Liu Z, Wang M, Sun F, Jiao L (2011) Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction. Neurocomputing 74(17):3193–3203CrossRefGoogle Scholar
  41. 41.
    Yang J et al (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 21(8):3467–3478MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yang S, Wang M, Chen Y, Sun Y (2012) Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans Image Process Publ IEEE Signal Process Soc 21(9):4016–4028MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yang X, Zhant S, Hu C, Liang Z, Xie D (2016) Super-resolution of medical image using representation learning. 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). Yangzhou, pp 1–6Google Scholar
  44. 44.
    Yang W et al (2016) Consistent coding scheme for single-image super-resolution via independent dictionaries. IEEE Trans Multimedia 18(3):1–1CrossRefGoogle Scholar
  45. 45.
    Yuan T et al (2014) Image super-resolution via kernel regression of sparse coefficients. IEEE international conference on acoustics, speech and signal processing IEEE, pp 5794–5798Google Scholar
  46. 46.
    Zeyde R, Elad M, Protter M (2010) On single image scale-up using sparse-representations. International conference on curves and surfaces Springer-Verlag, pp 711–730Google Scholar
  47. 47.
    Zhang D, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238CrossRefGoogle Scholar
  48. 48.
    Zhang K et al (2013) Image super-resolution via non-local steering kernel regression regularization. IEEE international conference on image processing IEEE, pp 943–946Google Scholar
  49. 49.
    Zhang K et al (2015) Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(3):846–861MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhang Y et al (2015) CCR: clustering and collaborative representation for fast single image super-resolution. IEEE Trans Multimedia 18(3):1–1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ronggui Wang
    • 1
  • Qinghui Wang
    • 1
  • Juan Yang
    • 1
    Email author
  • Lixia Xue
    • 1
  • Min Hu
    • 1
  1. 1.College of Computer and InformationHefei University of TechnologyHefeiChina

Personalised recommendations