A curvature salience descriptor for full and partial shape matching

  • Zhengbing Wang
  • Guili Xu
  • Yuehua Cheng
  • Ruipeng Guo
  • Zhengsheng Wang
Article

Abstract

Shape representation and matching is one of the fundamental problems in compute vision. In this paper, we propose a novel shape contour descriptor, called curvature salience descriptor (CSD), for full shape matching. The presented descriptor utilizes only the most representative information to globally describe shape contour and is invariant to translation, rotation, scaling and partial occlusion of shapes. Shape matching is performed using the Dynamic Time Warping (DTW) to establish the point-to-point correspondence. To the solution of partial shape matching, we slightly modify the descriptor and develop a new matching framework that can establish the correspondence between the open query and candidate from coarse to fine. Different from previous methods, a coarse matching process is implemented to fast reject the false candidates before we establish the point-to-point correspondence. We conduct the experiments on the public datasets but also in the context of some specific applications and the results demonstrate that the proposed technique can achieve favorable performance compared to the existing methods.

Keywords

Corner points Curvature Shape representation Shape matching 

Notes

Acknowledgements

This project is supported by the National Natural Science Foundation of China (61473148,51505220) and the Funding of Jiangsu Innovation Program for Graduate Education (KYLX16-0337).

References

  1. 1.
    Alajlan N, Rube IE, Kamel MS, Freeman G (2007) Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn 40(7):1911–1920CrossRefMATHGoogle Scholar
  2. 2.
    Andalo F, Miranda P, da Torres SR, Falcao A (2010) Shape feature extraction and description based on tensor scale. Pattern Recogn 43(1):26–36CrossRefMATHGoogle Scholar
  3. 3.
    Arica N, Vural FTY (2003) Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recogn Lett 24(9-10):1627–1639CrossRefMATHGoogle Scholar
  4. 4.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522CrossRefGoogle Scholar
  5. 5.
    Birk H, Moeslund TB, Madsen CB (1997) Real-time recognition of hand alphabet gestures using principal component analysis. In: Proceedings of the Scandinavian conference on image analysis, vol 1, pp 261–268Google Scholar
  6. 6.
    Blum H (1967) A transformation for extracting new descriptors of shape. Models Percept Speech Vis Form 19:362–380Google Scholar
  7. 7.
    Bouagar S, Larabi S (2016) Efficient descriptor for full and partial shape matching. Multimed Tools Appl 75(6):2989–3011CrossRefGoogle Scholar
  8. 8.
    Chen L, Feris R, Turk M (2008) Efficient partial shape matching using smith-waterman algorithm. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–6Google Scholar
  9. 9.
    Cui M, Wonka P, Razdan A, Hu J (2007) A new image registration scheme based on curvature scale space curve matching. Vis Comput 23(8):607–618CrossRefGoogle Scholar
  10. 10.
    Cui M, Femiani J, Hu J, Wonka P, Razdan A (2009) Curve matching for open 2d curves. Pattern Recogn Lett 30(1):1–10CrossRefGoogle Scholar
  11. 11.
    Fan H, Yang C, Tang Y (2015) Object detection based on scale-invariant partial shape matching. Mach Vis Appl 26(6):711–721CrossRefGoogle Scholar
  12. 12.
    Felzenszwalb PF, Schwartz JD (2007) Hierarchical matching of deformable shapes. In: Proceedings of IEEE Conference on computer vision and pattern recognition, pp 1–8Google Scholar
  13. 13.
    Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187CrossRefMATHGoogle Scholar
  14. 14.
    Hu RX, Jia W, Zhao Y, Gui J (2012) Perceptually motivated morphological strategies for shape retrieval. Pattern Recogn 45(9):3222–3230CrossRefGoogle Scholar
  15. 15.
    Laiche N, Larabi S (2017) Shape retrieval through normalized b-splines curves. Multimed Tools Appl 5:1–31Google Scholar
  16. 16.
    Latecki LJ, Lakamper R, Eckhardt U (2000) Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of IEEE Conference on computer vision and pattern recognition, vol 1, pp 424–429Google Scholar
  17. 17.
    Latecki LJ, Megalooikonomou V, Wang Q, Yu D (2007) An elastic partial shape matching technique. Pattern Recogn 40(11):3069–3080CrossRefMATHGoogle Scholar
  18. 18.
    Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266CrossRefGoogle Scholar
  19. 19.
    Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286CrossRefGoogle Scholar
  20. 20.
    Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. In: International Conference on pattern recognition, pp 898–901Google Scholar
  21. 21.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  22. 22.
    Ma T, Latecki LJ (2011) From partial shape matching through local deformation to robust global shape similarity for object detection. In: Proceedings of IEEE Conference on computer vision and pattern recognition, pp 1441–1448Google Scholar
  23. 23.
    Michel D, Oikonomidis I, Argyros A (2011) Scale invariant and deformation tolerant partial shape matching. Image Vis Comput 29(7):459–469CrossRefGoogle Scholar
  24. 24.
    Mori G, Belongie S, Malik J (2005) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27(11):1832–1837CrossRefMATHGoogle Scholar
  25. 25.
    Niu D, Bremer PT, Lindstrom P, Hamann B, Zhou Y, Zhang C (2016) Two-dimensional shape retrieval using the distribution of extrema of laplacian eigenfunctions. Vis Comput, 1–18Google Scholar
  26. 26.
    Pasupathy A, Connor CE (2001) Shape representation in area v4: position-specific tuning for boundary conformation. J Neurophysiol 86(5):2505–2519CrossRefGoogle Scholar
  27. 27.
    Pasupathy A, Connor CE (2002) Population coding of shape in area v4. Nat Neurosci 5(12):1332–1338CrossRefGoogle Scholar
  28. 28.
    Pedrosa GV, Barcelos CAZ (2010) Anisotropic diffusion for effective shape corner point detection. Pattern Recogn Lett 31(12):1658–1664CrossRefGoogle Scholar
  29. 29.
    Pedrosa GV, Batista MA, Barcelos CAZ (2013) Image feature descriptor based on shape salience points. Neurocomputing 120(10):156–163CrossRefGoogle Scholar
  30. 30.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRefGoogle Scholar
  31. 31.
    Premachandran V, Kakarala R (2012) Perceptually motivated shape context which uses shape interiors. Pattern Recogn 46(8):2092–2102CrossRefGoogle Scholar
  32. 32.
    Saber E, Xu Y, Tekalp AM (2005) Partial shape recognition by sub-matrix matching for partial matching guided image labeling. Pattern Recogn 38(38):1560–1573CrossRefGoogle Scholar
  33. 33.
    Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571CrossRefGoogle Scholar
  34. 34.
    Shu X, Wu XJ (2011) A novel contour descriptor for 2d shape matching and its application to image retrieval. Image Vis Comput 29(4):286–294CrossRefGoogle Scholar
  35. 35.
    Torres RDS, Falcao AX (2007) Contour salience descriptors for effective image retrieval and analysis. Image Vis Comput 25(1):3–13CrossRefGoogle Scholar
  36. 36.
    Torres RDS, Falcao AX, Costa LDF (2004) A graph-based approach for multiscale shape analysis. Pattern Recogn 37(6):1163–1174CrossRefGoogle Scholar
  37. 37.
    Wolfson HJ (1990) On curve matching. IEEE Trans Pattern Anal Mach Intell 12(5):483–489CrossRefGoogle Scholar
  38. 38.
    Wolter D, Latecki LJ (2004) Shape matching for robot mapping. In: Pacific Rim international conference on artificial intelligence, pp 693–702Google Scholar
  39. 39.
    Xie J, Heng PA, Shah M (2008) Shape matching and modeling using skeletal context. Pattern Recogn 41(5):1756–1767CrossRefMATHGoogle Scholar
  40. 40.
    Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph (TOG) 31(6):139Google Scholar
  41. 41.
    Xu G, Zhao Y, Guo R, Wang B, Tian Y, Li K (2014) A salient edges detection algorithm of multi-sensor images and its rapid calculation based on pfcm kernel clustering. Chin J Aeronaut 27(1):102–109CrossRefGoogle Scholar
  42. 42.
    Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229CrossRefGoogle Scholar
  43. 43.
    Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295CrossRefGoogle Scholar
  44. 44.
    Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhengbing Wang
    • 1
  • Guili Xu
    • 1
  • Yuehua Cheng
    • 2
  • Ruipeng Guo
    • 1
  • Zhengsheng Wang
    • 3
  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of AstronauticsNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations