Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 26677–26695 | Cite as

Variable aperture panoramic imaging

  • Jing Lv
  • Qiang Zhao
  • Feng DaiEmail author
  • Yike Ma
  • Yongdong Zhang
Article
  • 110 Downloads

Abstract

Panoramic imaging has important applications in virtual reality. Current panoramic imaging only can create a 360 panorama but cannot change the focal surface or support depth cues. In this paper, we present a variable aperture panoramic imaging method based on a two-sphere panorama model (TSPM). Based on this model, we propose a definition of Aperture for TSPM, which can precisely control the depth of field (DOF) of panoramas. With same aperture size and focus distance, two similar panoramas could be synthesized from a range of capture camera configurations. Extensive experiments have been carried out to validate our panoramic imaging method.

Keywords

Panoramic imaging Aperture Depth of field effect Focus cues 

Notes

Acknowledgements

This work is supported by National Key R&D Program of China (2016YFB0801203), National Natural Science Foundation of China (61702479, 61771458), and the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-ZDTP-018).

References

  1. 1.
    Birklbauer C, Bimber O (2014) Panorama light-field imaging. Comput Graphics Forum 33(2):43–52CrossRefGoogle Scholar
  2. 2.
    Birklbauer C, Opelt S, Bimber O (2013) Rendering gigaray light fields. Comput Graphics Forum 32(2):469–478CrossRefGoogle Scholar
  3. 3.
    Brooks FP (1999) What’s real about virtual reality? IEEE Comput Graph Appl 19(6):16–27CrossRefGoogle Scholar
  4. 4.
    Chen SE (1995) Quicktime vr: an image-based approach to virtual environment navigation. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. ACM, pp 29–38Google Scholar
  5. 5.
    Guttentag DA (2010) Virtual reality: applications and implications for tourism. Tour Manag 31(5):637–651CrossRefGoogle Scholar
  6. 6.
    Haeberli P, Akeley K (1990) The accumulation buffer: hardware support for high-quality rendering. ACM SIGGRAPH Computer Graphics 24(4):309–318CrossRefGoogle Scholar
  7. 7.
    Huang HC, Hung YP (1998) Panoramic stereo imaging system with automatic disparity warping and seaming. Graphical Models and Image Processing 60(3):196–208CrossRefGoogle Scholar
  8. 8.
    Ishiguro H, Yamamoto M, Tsuji S (1992) Omni-directional stereo. IEEE Trans Pattern Anal Mach Intell 14(2):257–262CrossRefGoogle Scholar
  9. 9.
    Kaufmann H, Dünser A (2007) Summary of usability evaluations of an educational augmented reality application. In: International conference on virtual reality, pp 660–669Google Scholar
  10. 10.
    Lee KC, Chung N (2008) Empirical analysis of consumer reaction to the virtual reality shopping mall. Comput Hum Behav 24(1):88–104CrossRefGoogle Scholar
  11. 11.
    Lee J, Kim B, Kim K, Kim Y, Noh J (2016) Rich360: optimized spherical representation from structured panoramic camera arrays. ACM Trans Graph 35(4):63:1–63:11Google Scholar
  12. 12.
    Mann S, Picard RW (1994) Virtual bellows: constructing high quality stills from video. In: IEEE international conference on image processing (ICIP), vol 1. IEEE, pp 363–367Google Scholar
  13. 13.
    McMahan RP, Bowman DA, Zielinski DJ, Brady RB (2012) Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans Vis Comput Graph 18(4):626–633CrossRefGoogle Scholar
  14. 14.
    Milgram DL (1975) Computer methods for creating photomosaics. IEEE Trans Comput 100(11):1113–1119CrossRefGoogle Scholar
  15. 15.
    Park KM, Ku J, Choi SH, Jang HJ, Park JY, Kim SI, Kim JJ (2011) A virtual reality application in role-plays of social skills training for schizophrenia: a randomized, controlled trial. Psychiatry Res 189(2):166–172CrossRefGoogle Scholar
  16. 16.
    Peleg S, Ben-Ezra M (1999) Stereo panorama with a single camera. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 1. IEEE, pp 395–401Google Scholar
  17. 17.
    Peleg S, Herman J (1997) Panoramic mosaics by manifold projection. In: IEEE computer society conference on computer vision and pattern recognition (CVPR). IEEE, pp 338–343Google Scholar
  18. 18.
    Peleg S, Ben-Ezra M, Pritch Y (2001) Omnistereo: panoramic stereo imaging. IEEE Trans Pattern Anal Mach Intell 23(3):279–290CrossRefGoogle Scholar
  19. 19.
    Qian N (1997) Binocular disparity and the perception of depth. Neuron 18(3):359–368MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shum HY, Szeliski R (1999) Stereo reconstruction from multiperspective panoramas. In: IEEE international conference on computer vision (ICCV), vol 1. IEEE, pp 14–21Google Scholar
  21. 21.
    Sutherland IE (1965) The ultimate display. Multimedia: from wagner to virtual realityGoogle Scholar
  22. 22.
    Szeliski R (1996) Video mosaics for virtual environments. IEEE Comput Graph Appl 16(2):22–30CrossRefGoogle Scholar
  23. 23.
    Uyttendaele M, Criminisi A, Kang SB, Winder S, Szeliski R, Hartley R (2004) Image-based interactive exploration of real-world environments. IEEE Comput Graph Appl 24(3):52–63CrossRefGoogle Scholar
  24. 24.
    Wu C, Agarwal S, Curless B, Seitz SM (2011) Multicore bundle adjustment. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3057–3064Google Scholar
  25. 25.
    Wu C et al (2011) Visualsfm: a visual structure from motion system. http://ccwu.me/vsfm/
  26. 26.
    Zhang F, Liu F (2014) Parallax-tolerant image stitching. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3262–3269Google Scholar
  27. 27.
    Zhao Q, Feng W, Wan L, Zhang J (2015) Sphorb: a fast and robust binary feature on the sphere. Int J Comput Vis 113(2):143–159MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jing Lv
    • 1
    • 2
  • Qiang Zhao
    • 1
  • Feng Dai
    • 1
    Email author
  • Yike Ma
    • 1
  • Yongdong Zhang
    • 1
  1. 1.Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS)Institute of Computing Technology, CASBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations