Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 1, pp 177–195 | Cite as

Robust corner detection using altitude to chord ratio accumulation

  • Xinyu Lin
  • Ce ZhuEmail author
  • Yipeng Liu
  • Qian Zhang
Article
  • 109 Downloads

Abstract

As one of the most significant image local features, corner is widely utilized in many computer vision applications. A number of contour-based corner detection algorithms have been proposed over the last decades, among which the chord-to-point distance accumulation (CPDA) corner detector is reported to produce robust performance in corner detection, especially compared with curvature scale-space (CSS) based corner detectors, which are sensitive to local variation and noise on the contour. In this paper, we investigate the CPDA algorithm in terms of its limitations, and then propose the altitude-to-chord ratio accumulation (ACRA) corner detector based on CPDA approach. Altitude-to-chord ratio is insensitive to the selection of chord length compared with chord-to-point distance, which allows us utilize a single chord instead of the three chords used in CPDA algorithm. Besides, we replace the maximum normalization used in CPDA algorithm with the linear normalization to avoid the uneven data projection. Numerical experiments demonstrate that the proposed ACRA corner detection algorithm outperforms the CPDA approach and other seven state-of-the-art methods in terms of the repeatability and localization error evaluation metrics.

Keywords

Altitude-to-chord ratio accumulation Contour-based corner detection Low-level feature detection 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61602091 and Grant 61571102, in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2016J199 and Grant ZYGX2014Z003.

References

  1. 1.
    Awrangjeb M, Lu G J (2008) Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans Multimedia 10 (6):1059–1072CrossRefGoogle Scholar
  2. 2.
    Awrangjeb M, Lu G (2013) A performance review of recent corner detectors. In: International Conference on Digital Image Computing: Techniques and Applications. Hobart, AustraliaGoogle Scholar
  3. 3.
    Awrangjeb M, Lu G J, Murshed M (2007) An affine resilient curvature scale-space corner detector. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, AmericaGoogle Scholar
  4. 4.
    Awrangjeb M, Lu G J, Fraser C S, Ravanbakhsh M (2009) A fast corner detector based on the chord-to-point distance accumulation technique. In: International Conference on Digital Image Computing: Techniques and Applications, Melbourne, AustraliaGoogle Scholar
  5. 5.
    Awrangjeb M, Lu G, Fraser C S (2010) A comparative study on contour-based corner detectors. In: International Conference on Digital Image Computing: Techniques and Applications, Sydney, AustraliaGoogle Scholar
  6. 6.
    Awrangjeb M, Lu G J, Fraser C S (2012) Performance comparisons of contour-based corner detectors. IEEE Trans Image Process 21(9):4167–4179MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gao X, Sattar F, Quddus A, Venkateswarlu R (2007) Multiscale contour corner detection based on local natural scale and wavelet transform. Image Vis Comput 25(6):890–898CrossRefGoogle Scholar
  8. 8.
    Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey Vision Conference, Manchester, BritainGoogle Scholar
  9. 9.
    He X C, Yung N H (2008) Corner detector based on global and local curvature properties. Opt Eng 47(5):057:008–057:008CrossRefGoogle Scholar
  10. 10.
    Jian M W, Dong J Y, Ma J (2011) Image retrieval using wavelet-based salient regions. Imaging Sci J 59(4):219–231CrossRefGoogle Scholar
  11. 11.
    Jian M, Lam K M, Dong J, Shen L (2015) Visual-patch-attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586CrossRefGoogle Scholar
  12. 12.
    Lin X, Zhu C, Zhang Q, Huang X, Liu Y (2017) Efficient and robust corner detectors based on second order difference of contour. IEEE Signal Process Lett PP(99):1–1Google Scholar
  13. 13.
    Lin X, Zhu C, Zhang Q, Liu Y (2017) Geometric mesh corner detection using triangle principle. Electron Lett 53(20):1354–1356CrossRefGoogle Scholar
  14. 14.
    Mokhtarian F, Mohanna F (2001) Enhancing the curvature scale space corner detector. In: Proceedings of the Scandinavian Conference on Image Analysis, Bergen, NorwayGoogle Scholar
  15. 15.
    Mokhtarian F, Suomela R (1998) Robust image corner detection through curvature scale space. IEEE Trans Pattern Anal Mach Intell 20(12):1376–1381CrossRefGoogle Scholar
  16. 16.
    Moravec HP (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. PhD thesis, Stanford, p aAI8024717Google Scholar
  17. 17.
    Paula I C, Medeiros F N S, Bezerra F N, Ushizima D M (2013) Multiscale corner detection in planar shapes. J Math Imaging Vision 45(3):251–263MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pedrosa G V, Barcelos C A (2010) Anisotropic diffusion for effective shape corner point detection. Pattern Recogn Lett 31(12):1658–1664CrossRefGoogle Scholar
  19. 19.
    Rattarangsi A, Chin R (1992) Scale-based detection of corners of planar curves. IEEE Trans Pattern Anal Mach Intell 14(4):430–449CrossRefGoogle Scholar
  20. 20.
    Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: IEEE International Conference on Computer Vision, Beijing, ChinaGoogle Scholar
  21. 21.
    Shi J, Tomasi C (1994) Good features to track. In: IEEE International Conference on Computer Vision and Pattern Recognition, Seattle, WAGoogle Scholar
  22. 22.
    Shui P L, Zhang W C (2013) Corner detection and classification using anisotropic directional derivative representations. IEEE Trans Image Process 22(8):3204–3218CrossRefGoogle Scholar
  23. 23.
    Smith S M, Brady J M (1997) Susan-a new approach to low level image processing. Int J Comput Vis 23(1):45–78CrossRefGoogle Scholar
  24. 24.
    Teng S W, Sadat R M N, Lu G J (2015) Effective and efficient contour-based corner detectors. Pattern Recogn 48(7):2185–2197CrossRefGoogle Scholar
  25. 25.
    Topal C, Özkan K, Benligiray B, Akinlar C (2013) A robust css corner detector based on the turning angle curvature of image gradients. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, CanadaGoogle Scholar
  26. 26.
    Tsai D M, Hou H T, Su H J (1999) Boundary-based corner detection using eigenvalues of covariance matrices. Pattern Recogn Lett 20(1):31–40CrossRefGoogle Scholar
  27. 27.
    Zhang X H, Lei M, Yang D, Wang Y Z, Ma L T (2007) Multi-scale curvature product for robust image corner detection in curvature scale space. Pattern Recogn Lett 28(5):545–554CrossRefGoogle Scholar
  28. 28.
    Zhang X H, Wang H X, Hong M J, Xu L, Yang D, Lovell B C (2009) Robust image corner detection based on scale evolution difference of planar curves. Pattern Recogn Lett 30(4):449–455CrossRefGoogle Scholar
  29. 29.
    Zhang X H, Wang H X, Smith A W, Ling X, Lovell B C, Yang D (2010) Corner detection based on gradient correlation matrices of planar curves. Pattern Recogn 43(4):1207–1223CrossRefGoogle Scholar
  30. 30.
    Zhang S, Yang D, Huang S, Tu L, Zhang X (2015) Corner detection using chebyshev fitting-based continuous curvature estimation. Electron Lett 51(24):1988–1990CrossRefGoogle Scholar
  31. 31.
    Zhang X, Qu Y, Yang D, Wang H, Kymer J (2015) Laplacian scale-space behavior of planar curve corners. IEEE Trans Pattern Anal Mach Intell 37 (11):2207–2217CrossRefGoogle Scholar
  32. 32.
    Zhong B J, Liao W H (2007) Direct curvature scale space: Theory and corner detection. IEEE Trans Pattern Anal Mach Intell 29(3):508–512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Engineering / Center for RoboticsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations