Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 17, pp 23043–23071 | Cite as

Robust recovery of myocardial kinematics using dual \(\mathcal {H}_{\infty }\) criteria

  • Zhifan Gao
  • Heye Zhang
  • Defeng Wang
  • Min Guo
  • Huafeng Liu
  • Ling Zhuang
  • Pengcheng Shi
Article

Abstract

Accurate estimation of myocardial motion can help to better understand the pathophysiological processes of ischemic heart diseases. However, because of partial and noisy image-derived measurements on the cardiac kinematics, the performance of model-based motion estimation relies heavily on the assumption of noise distribution on the measurement data. While existing studies of model-based motion estimation have often adopted the \(\mathcal {H}_{2}\) criteria (e.g. least square error) based on fixed model constraints from mathematical or mechanical nature, we present a robust estimation framework with an adaptive biomechanical model constraint using dual \(\mathcal {H}_{\infty }\) criteria for the first time. Comparing to the minimization of average gaussian error in \(\mathcal {H}_{2}\) criteria, our \(\mathcal {H}_{\infty }\) criteria aims to minimize the maximum error without regarding the noise distribution. In this work, our dual estimation framework consists of two iterative \(\mathcal {H}_{\infty }\) filters: One filter for the kinematics estimation and another one for the elasticity estimation. At each time step, heart kinematics is estimated with sub-optimal fixed material parameters, followed by an elasticity property recovering given these sub-optimal kinematic state estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. We evaluate the performance of dual estimation framework on synthetic data, cine image sequences, and human image sequence. Our dual estimation framework shows a higher tolerance of noise than the conventional extended Kalman filter. The results obtained by both synthetic data of varying noises and magnetic resonance image sequences demonstrate the accuracy and robustness of the proposed strategy.

Keywords

Cardiac motion analysis Multiframe estimation State space representation \(\mathcal {H}_{\infty }\) filter Robust estimation 

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFC1300302), Natural Science Foundation of China (No. 61427807, 61525106, 61771464), and Science Technology and Innovation Committee of Shenzhen for Research Projects (SGLH20150213143207911, JCYJ20151030151431727).

References

  1. 1.
  2. 2.
    Abd-Elmoniem K, Stuber M, Prince J (2008) Direct three-dimensional myocardial strain tensor quantification and tracking using zHARP. Med Image Anal 12(6):778–786CrossRefGoogle Scholar
  3. 3.
    Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845CrossRefGoogle Scholar
  4. 4.
    Bathe K, Wilson E (1976) Numerical methods in finite element analysis. Prentice-Hall, New JerseyzbMATHGoogle Scholar
  5. 5.
    Benayoun S, Ayache N (1998) Dense non-rigid motion estimation in sequences of medical images using differential constraints. Int J Comput Vis 26(1):25–40CrossRefGoogle Scholar
  6. 6.
    Britton OJ, Bueno-Orovio A, Van Ammel K, Lu HR, Towart R, Gallacher DJ, Rodriguez B (2013) Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proc Nat Acad Sci 110(23):E2098–E2105CrossRefGoogle Scholar
  7. 7.
    Burger M, Modersitzki J, Ruthotto L (2013) A hyperelastic regularization energy for image registration. SIAM J Sci Comput 35(1):B132–B148MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng TM, Savkin AV, Celler BG, Su SW, Wang L (2008) Nonlinear modeling and control of human heart rate response during exercise with various work load intensities. IEEE Trans Biomed Eng 55(11):2499–2508CrossRefGoogle Scholar
  9. 9.
    Chiang P, Cai Y, Mak KH, Zheng J (2013) A B-spline approach to phase unwrapping in tagged cardiac mri for motion tracking. Magn Reson Med 69 (5):1297–1309CrossRefGoogle Scholar
  10. 10.
    Cochet H, Bullier E, Gerbaud E, Durieux M, Godbert Y, Lederlin M, Coste P, Barat JL, Laurent F, Montaudon M (2013) Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: initial validation versus cardiac MR. J Nuclear Med 54(4):556–563CrossRefGoogle Scholar
  11. 11.
    Cox M, Driessen N, Bouten C, Baaijens F (2006) Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study. J Biomech Eng 128(3):428–436CrossRefGoogle Scholar
  12. 12.
    Declerck J, Denney T, Ozturk C, O’Dell W, McVeigh E (2000) Left ventricular motion reconstruction from planar tagged MR images: a comparison. Phys Med Biol 45(6):1611–1632CrossRefGoogle Scholar
  13. 13.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Royal Stat Soc 39(1):1–38MathSciNetzbMATHGoogle Scholar
  14. 14.
    Denney T, Prince J (1994) 3D displacement field reconstruction from planar tagged cardiac MR images. In: Proceedings of the IEEE Workshop on Biomedical Image Analysis, pp 51–60Google Scholar
  15. 15.
    Didinsky G, Pan Z, Basar T (1995) Parameter identification for uncertain plants using \(\mathcal {H}_{\infty }\) methods. Automatica 31(9):1227–1250MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gao H, Allan A, McComb C, Luo X, Berry C (2014) Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE. Phys Med Biol 59(13):3637–3656CrossRefGoogle Scholar
  17. 17.
    Gao Z, Xiong H, Liu X, Zhang H, Ghista D, Wu W, Li S (2017) Robust estimation of carotid artery wall motion using the elasticity-based state-space approach. Med Image Anal 37:1–21CrossRefGoogle Scholar
  18. 18.
    Gilliam A, Epstein F, Acton S (2009) Cardiac motion recovery via active trajectory field models. IEEE Trans Inf Technol Biomed 13:226–235CrossRefGoogle Scholar
  19. 19.
    Glad T, Ljung L (2000) Control theory. Taylor & Francis, LondonGoogle Scholar
  20. 20.
    Glass L, Hunter P, McCulloch A (1991) Theory of heart. Springer-Verlag, New YorkCrossRefGoogle Scholar
  21. 21.
    Gopal S, Otaki Y, Arsanjani R, Berman D, Terzopoulos D, Slomka P (2013) Combining active appearance and deformable superquadric models for LV segmentation in cardiac MRI. In: SPIE Medical Imaging, p. 86690G. International Society for Optics and PhotonicsGoogle Scholar
  22. 22.
    Halmos PR, Sunder VS (1978) Bounded integral operators on L 2 spaces. Springer, BerlinCrossRefzbMATHGoogle Scholar
  23. 23.
    Hameeteman K, Klooster R, Selwaness M, Lugt A, Witteman J, Niessen W, Klein S (2013) Carotid wall volume quantification from magnetic resonance images using deformable model fitting and learning-based correction of systematic errors. Phys Med Biol 58(5):1605–1623CrossRefGoogle Scholar
  24. 24.
    Han L, Hipwel J, Tanner C, Taylor Z, Mertzanidou T, Cardoso J, Ourselin S, Hawkes D (2012) Development of patient-specific biomechanical models for predicting large breast deformation. Phys Med Biol 57(2):455–472CrossRefGoogle Scholar
  25. 25.
    Honarvar M, Sahebjavaher R, Salcudean S, Rohling R (2012) Sparsity regularization in dynamic elastography. Phys Med Biol 57(19):5909–5927CrossRefGoogle Scholar
  26. 26.
    Jahanzad Z, Liew Y, Bilgen M, McLaughlin R, Leong C, Chee K, Aziz Y, Ung N, Lai K, Ng S, Lim E (2015) Regional assessment of LV wall in infarcted heart using tagged MRI and cardiac modelling. Phys Med Biol 60 (10):4015–4031CrossRefGoogle Scholar
  27. 27.
    Janzc RF, Kubertc BR, Moriarty TF, Grimma AF (1974) Deformation of the diastolic left ventricle —II. Nonlinear geometric effects. J Biomech 7(6):509–516CrossRefGoogle Scholar
  28. 28.
    Kerwin W, Prince J (1999) The kriging update model and recursive space-time function estimation. IEEE Trans Signal Process 47(11):2942–2952MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Klein G, Huesman R (2000) Elastic material model mismatch effects in deformable motion estimation. IEEE Trans Nuclear Sci 47(3):1000–1005CrossRefGoogle Scholar
  30. 30.
    Liu H, Hu H, Sinusas A, Shi P (2012) An H approach for elasticity properties reconstruction. Med Phys 39(1):475–481CrossRefGoogle Scholar
  31. 31.
    Liu H, Shi P (2004) Cardiac motion and elasticity characterization with iterative sequential H criteria. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp 34–42Google Scholar
  32. 32.
    Liu H, Shi P (2009) Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. IEEE Trans Biomed Eng 56(2):378–389CrossRefGoogle Scholar
  33. 33.
    Marchesseau S, Delingette H, Sermesant M, Cabrera-Lozoya R, Tobon-Gomez C, Moireau P, i Ventura RMF, Lekadir K, Hernandez A, Garreau M, Donal E, Leclercq C, Duckett SG, Rhode K, Rinaldi CA, Frangi AF, Razavi R, Chapelle D, Ayacha N (2013) Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes. Med Image Anal 17(7):816– 829CrossRefGoogle Scholar
  34. 34.
    McEachen J, Duncan J (1997) Shape-based tracking of left ventricular wall motion. IEEE Trans Med Imaging 16(3):270–283CrossRefGoogle Scholar
  35. 35.
    McEachen J, Nehorai A, Duncan J (2000) Multiframe temporal estimation of cardiac nonrigid motion. IEEE Trans Image Process 9(4):651–665CrossRefGoogle Scholar
  36. 36.
    Metaxas DN, Kakadiaris IA (2002) Elastically adaptive deformable models. IEEE Trans Pattern Anal Mach Intell 24(10):1310–1321CrossRefGoogle Scholar
  37. 37.
    Meyer C, Bonnemains L, Marċon F, Marie PY, Felblinger J, Vuissoz PA (2014) Longitudinal myocardial peak velocities using high temporal resolution phase-contrast and simple averaging are comparable to tissue doppler echocardiography. Magn Reson Mater Phys Biol Med 27(3):211–218CrossRefGoogle Scholar
  38. 38.
    Meyer F, Constable R, Sinusas A, Duncan J (1996) Tracking myocardial deformation using spatially constrained velocities. IEEE Trans Med Imaging 15(4):453–465CrossRefGoogle Scholar
  39. 39.
    Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Methods Appl Mech Eng 197:659–677MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Moireau P, Chapelle D, Le Tallec P (2009) Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse Probl 25(3):35,010–35,035MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nash MP (1998) Mechanics and material properties of the heart using an anatomically accurate mathematical model. PhD thesis, The University of Auckland, New ZealandGoogle Scholar
  42. 42.
    O’Brien RT, Kiriakidis K (2003) Convergence and performance in H -based parameter identification. IFAC Proc 36(11):127–132CrossRefGoogle Scholar
  43. 43.
    Ozturk C, McVeigh E (2000) Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol 45(6):1683–702CrossRefGoogle Scholar
  44. 44.
    Papademetris X, Sinusas A, Dione D, Constable R, Duncan J (2002) Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE Trans Med Imaging 21(7):786–799CrossRefGoogle Scholar
  45. 45.
    Pavarino E, Neves L, Machado J, de Godoy M, Shiyou Y, Momente JC, Zafalon GF, Pinto A, Valêncio CR (2013) Free tools and strategies for the generation of 3d finite element meshes: modeling of the cardiac structures. Int J Biomed Imaging 2013:1–11CrossRefGoogle Scholar
  46. 46.
    Pelc N, Herfkens R, Shimakawa A, Enzmann D (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254Google Scholar
  47. 47.
    Perreard I, Pattison A, Doyley M, McGarry M, Barani Z, Houten E, Weaver J, Paulsen K (2010) Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions. Phys Med Biol 55(22):6801–15CrossRefGoogle Scholar
  48. 48.
    Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5):612–625CrossRefGoogle Scholar
  49. 49.
    Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill D, Chapell D, Razavi R (2005) Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties. International Workshop on Functional Imaging and Modeling of the Heart, pp 325–337Google Scholar
  50. 50.
    Shen X, Deng L (1999) A dynamic system approach to speech enhancement using the \(\mathcal {H}_{\infty }\) filtering algorithm. IEEE Trans Speech Audio Process 7(4):391–399CrossRefGoogle Scholar
  51. 51.
    Shi P, Liu H (2003) Stochastic finite element framework for simultaneous estimation of cardiac kinematics functions and material parameters. Med Image Anal 7(4):445–464CrossRefGoogle Scholar
  52. 52.
    Shi P, Sinusas A, Constable RT, Duncan J (1999) Volumetric deformation analysis using mechanics-based data fusion: applications in cardiac motion recovery. Int J Comput Vis 35(1):87–107CrossRefGoogle Scholar
  53. 53.
    Simon D (2006) Optimal state estimation: Kalman, H-infinity, and Nonlinear Approaches. Wiley, NJCrossRefGoogle Scholar
  54. 54.
    Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989CrossRefGoogle Scholar
  55. 55.
    Taylor JR Classical mechanics, University Science Books, USAGoogle Scholar
  56. 56.
    Tsap L, Goldgof D, Sarkar S (2000) Nonrigid motion analysis based on dynamic refinement of finite element models. IEEE Trans Pattern Anal Mach Intell 22 (5):526–543CrossRefGoogle Scholar
  57. 57.
    Vaccarella A, Momi ED, Enquobahrie A, Ferrigno G (2013) Unscented Kalman filter based sensor fusion for robust optical and electromagnetic tracking in surgical navigation. IEEE Trans Instrum Measur 62(7):2067–2081CrossRefGoogle Scholar
  58. 58.
    Wang D, Wang B, Zhao S, Yao H, Liu H (2017) View-based 3D object retrieval with discriminative views. Neurocomputing 252:58–66CrossRefGoogle Scholar
  59. 59.
    Wong A, Liu H, Sinusas A, Shi P (2003) Spatiotemporal active region model for simultaneous segmentation and motion estimation of the whole heart. In: IEEE workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp 193–200Google Scholar
  60. 60.
    Young A, Kraitchman D, Dougherty L, Axel L (1995) Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans Med Imaging 14(3):413–421CrossRefGoogle Scholar
  61. 61.
    Young A, Prince J (2013) Cardiovascular magnetic resonance: Deeper insights through bioengineering. Ann Rev Biomed Eng 15:433–461CrossRefGoogle Scholar
  62. 62.
    Zerhouni E, Parish D, Rogers W, Yang A, Shapiro E (1988) Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63CrossRefGoogle Scholar
  63. 63.
    Zhang Z, Sahn DJ, Song X (2013) Right ventricular strain analysis from 3D echocardiography by using temporally diffeomorphic motion estimation. In: International Conference on Functional Imaging and Modeling of the Heart. Springer, pp 474–482Google Scholar
  64. 64.
    Zhao S, Chen L, Yao H, Zhang Y, Sun X (2015) Strategy for dynamic 3D depth data matching towards robust action retrieval. Neurocomputing 151:533–543CrossRefGoogle Scholar
  65. 65.
    Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118CrossRefGoogle Scholar
  66. 66.
    Zhu Y, Pelc N (1999) A spatiotemporal model of cyclic kinematics and its application to analyzing nonrigid motion with MR velocity images. IEEE Trans Med Imaging 18(7):557–569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong KongChina
  3. 3.Department of Optical EngineeringZhejiang UniversityHangzhouChina
  4. 4.Northwestern Lake forest Hospital, Department of Radiation OncologyLake forestUSA
  5. 5.B. Thomas Golisano College of Computing and Information SciencesRochester Institute of TechnologyRochesterUSA

Personalised recommendations