Multimedia Tools and Applications

, Volume 77, Issue 17, pp 22605–22616 | Cite as

Tibial eminence: a new anatomical risk factor for anterior cruciate ligament injuries

  • Ariful I. BhuiyanEmail author
  • Javad Hashemi
  • Nabila Shamim
  • Sarhan M. Musa


Recently, the geometry of the tibial plateau has drawn a lot of attention as a source of possible risk factors for anterior cruciate ligament injury. The anterior cruciate ligament injuries may be linked to the intrinsic risk factors associated with the tibial plateau. Discovering this kind of risk factors may help in developing the anterior cruciate ligament (ACL) prevention strategies regardless of gender. In this paper, we hypothesize that subjects with smaller tibial eminence volume and height are more susceptible to ACL injury. We further hypothesize this factor remains significant even after adjusting for inter-subject size differences. The tibial eminence in 52 uninjured controls (32 women and 20 men) and 46 anterior cruciate ligament-injured cases (23 women and 23 men) were measured using magnetic resonance images. A t-test was performed to establish any existing differences between groups. The pooled injured population had less tibial eminence volume (p=0.0021) compared with the pooled uninjured population. We observed that small sized tibial eminence volume could be a major risk factor in anterior cruciate ligament injury.


Anterior cruciate ligament (ACL) Tibial plateau Tibial eminence ACL injury Risk factors 



The authors gratefully acknowledge the support of Dr. Evelyne Fliszar, University of Vermont, for her patient assistance in collecting and evaluating the MRI scans. The support of the National Institutes of Health (R01AR050421; principal investigator, Bruce Beynnon) is also gratefully acknowledged.


  1. 1.
    Ageberg E (2007) Neuromuscular training optimizes knee function after arthoscopic ACL reconstruction. Aust J Physiother 53:287CrossRefGoogle Scholar
  2. 2.
    Beynnon BD, Mansouri H, Chandrashekar N, Hashemi J, Hardy D, Slauterbeck JR (2010) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29(7):993–1001Google Scholar
  3. 3.
    Boden BP, Dean GS, Feagin AJ, Garrett WJ (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578Google Scholar
  4. 4.
    Boden BP, Torg JS, Knowles SBHTE (2009) Video Analysis of Anterior Cruciate Ligament Injury. Am J Sports Med 37:252–259CrossRefGoogle Scholar
  5. 5.
    Chaudhari AM, Zelman EA, Flamigan DC, Kaeding CC, Nagaraja HN (2009) Anterior Cruciate Ligament-Injured Subjects Have Smaller Anterior Cruciate Ligaments Than Matched Controls: A Magnetic Resonance Imaging Study. Am J Sports Med 37(7):1282–1287CrossRefGoogle Scholar
  6. 6.
    Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux JL, Chen W (2014) Artifact Suppressed Dictionary Learning for Low-dose CT Image Processing. IEEE, Trans Med Imag 33(12):2271–2292CrossRefGoogle Scholar
  7. 7.
    Chen Y, Zhang Y, Yang J, Cao Q, Yang G, Chen J, Shu H, Luo L, Coatrieux JL (2016) Curve-like Structure Extraction Using Minimal Path Propagation with Backtracking. IEEE, Trans Imag Process 25(2):988–1003MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen Y, Yang J, Zhang Y, Shu H, Luo L, Coatrieux JL (2016) IEEE Trans Circ Syst Video Technol. doi: 10.1109/TCSVT.2016.2615444
  9. 9.
    Finsterbush A, Frankl U, Matan Y (1990) Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 18(5):475–479CrossRefGoogle Scholar
  10. 10.
    Garrett GE (2004) Anterior cruciate ligament injury: pathophynology and current therapeutic principles. Pap Present 71st Annu Meet Am Acad Orthop SurgGoogle Scholar
  11. 11.
    Griffin LY (2000) Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. J Am Acad Orthoaedic Surg 8:141–150CrossRefGoogle Scholar
  12. 12.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34(9):1512–1532CrossRefGoogle Scholar
  13. 13.
    Harmon KG, Lioyd M (2000) Gender differences in non-contact anterior cruciate ligament injuries. Clinincs Sport Med 19(2):287–302CrossRefGoogle Scholar
  14. 14.
    Hashemi J, Chandrashekar N, Mansouri H (2010) Shallow Medial Tibial Plateau and Steep Medial and Lateral Slopes. Am J Sports Med 38(1):54–62CrossRefGoogle Scholar
  15. 15.
    Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 34(2):299–311CrossRefGoogle Scholar
  16. 16.
    Ireland ML (2002) The female ACL: why is it more prone to injury? Orthop Clin North Am 33:637–651CrossRefGoogle Scholar
  17. 17.
    Ireland ML, Gaudette M, Crook S (1997) ACL injuries in the female athlete. J Sport Rehabil 6:97–110CrossRefGoogle Scholar
  18. 18.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Simth GSJ (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefGoogle Scholar
  19. 19.
    McLean SG (2010) Complex integrative morphological and mechanical contributions to ACL injury risk. Exerc Sport Sci Rev 38(4):192–200CrossRefGoogle Scholar
  20. 20.
    Nagano Y, Ida H, Akai M, Fukubayashi T (2009) Biomechanical charateristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee 16:153–158CrossRefGoogle Scholar
  21. 21.
    Renstrom P (2008) Non-contact ACL injuries in female athletes. Br J Sports Med 42:394–412CrossRefGoogle Scholar
  22. 22.
    Shambaugh JP, Klein A, Herbert JH (1991) Structural measures as predictors of injury basketball players. Med Sci Sports Exerc 23:522–527CrossRefGoogle Scholar
  23. 23.
    Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707CrossRefGoogle Scholar
  24. 24.
    Stone KR, Freyer A, Turek T, Walgenbach AW, Wadhwa S (2007) Meniscal Sizing Based on Gender, Height, and Weight. Anthroscopy J Arthrosc Relat Surg 23(5):503–508CrossRefGoogle Scholar
  25. 25.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, Taylor DC (2003) Risk factors associated with non-contact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842CrossRefGoogle Scholar
  26. 26.
    Wang S, Li J, Wang H, Dong Z, Yang M, Wu X, Liu B, Zhang Y (2017) Texture analysis method based on fractional Fourier entropy and fitness-scaling adaptive genetic algorithm for detecting left-sided and right-sided sensorineural hearing loss. Fundamental Informaticae 151(1-4):505–521MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang S, Li Y, Shao Y, Cattani C, Zhang Y, Du S (2017) Detection of Dendritic Spines using Wavelet Packet Entropy and Fuzzy Support Vector Machine. CNS Neurol Disord Drug Targets 16(2):116–121CrossRefGoogle Scholar
  28. 28.
    Whiting WC, Zernicke RF (1998) Biomechanics of musculoskeletal injury. Champaign, Hum KinetGoogle Scholar
  29. 29.
    Zhang YD, Jiang Y, Zhu W, Lu S, Zhao G (2017) Exploring a smart pathological brain detection method on Pseudo Zernike moment. Multimed Tools Appl. doi: 10.1007/s11042-017-4703-0

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ariful I. Bhuiyan
    • 1
    Email author
  • Javad Hashemi
    • 2
  • Nabila Shamim
    • 3
  • Sarhan M. Musa
    • 4
  1. 1.HoustonUSA
  2. 2.Department of Ocean and Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Department of Chemical EngineeringPrairie View A&M UniversityPrairie ViewUSA
  4. 4.Department of Engineering TechnologyPrairie View A&M UniversityPrairie ViewUSA

Personalised recommendations