Advertisement

Metal Science and Heat Treatment

, Volume 61, Issue 7–8, pp 463–471 | Cite as

Grain Boundary Embrittlement of Steels of Vver-1000 Reactor Vessels Under Long-Term Operation

  • E. A. KuleshovaEmail author
  • D. A. Mal’tsev
  • S. V. Fedotova
GRAIN-BOUNDARY EMBRITTLEMENT
  • 14 Downloads

Results of fractographic analysis and Auger electron spectroscopy of materials of vessels of VVER-1000 reactors obtained at the “Kurchatov Institute” Research Center are systematized. Comparative analysis of the effect of the operating factors on the level of grain boundary embrittlement in the matrix metal and welded joints is performed. The contribution of grain boundary embrittlement into the total radiation-induced embrittlement of the weld metal of the vessels is determined.

Key words

reactor vessel matrix metal weld metal radiation embrittlement thermal embrittlement embrittlement mechanisms grain boundary fracture grain boundary segregation fractographic studies Auger electron spectroscopy 

References

  1. 1.
    N. N. Alekseenko, A. D. Amaev, I. V. Gorynin, and V. A. Nikolaev, Radiation Damage of Vessel Steels of Water-Moderated Reactors [in Russian], Énergoizdat, Moscow (1981), 191 p.Google Scholar
  2. 2.
    Koji Fukuya, “Current understanding of radiation-induced degradation in light water reactor structural steels,” J. Nucl. Sci. Technol., 50:3, 213 – 254 (2013) ( https://doi.org/10.1080/00223131.2013.772448).CrossRefGoogle Scholar
  3. 3.
    N. Soneda (ed.), Radiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants, Woodhead Publ., (2015), 409 p., ISBN: 978-1-84569-967-3 (https://doi.org/ https://doi.org/10.1016/B978-1-84569-967-3.50014-3).
  4. 4.
    J. Kameda and Y. Nishiyama, “Combined effects of phosphorus segregation and partial intergranular fracture on the ductile-brittle transition temperature in structural alloy steels,” Mater. Sci. Eng. A, 528, 3705 – 3713 (https://doi.org/ https://doi.org/10.1016/j.msea.2011.01.018).CrossRefGoogle Scholar
  5. 5.
    B. A. Gurovich, E. A. Kuleshova, D. A. Mal’tsev, et al., “Relation between the operating characteristics of vessel steels of nuclear reactors and the evolution of their nanostructure under operating temperature and irradiation,” Vopr. Atom. Nauk. Tekh., Ser. Fiz. Rad. Yavl. Rad. Povr., No. 2(84), 3 – 10 (2013).Google Scholar
  6. 6.
    Ya. I. Shtrombakh, B. A. Gurovich, E. A. Kuleshova, et al., “Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels,” J. Nucl. Mater., 452, 348 – 358 (2014) (http://dx.doi.org/ https://doi.org/10.1016/j.jnucmat.2014.05.059).CrossRefGoogle Scholar
  7. 7.
    L. M. Utevskii, E. E. Glikman, and G. S. Kark, Reversible Temper Brittleness of Steel and Iron Alloys [in Russian], Metallurgiya (1987), 222 p.Google Scholar
  8. 8.
    B. Gurovich, E. Kuleshova, O. Zabusov, et al., “Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement,” J. Nucl. Mater., 435, 25 – 31 (2013) (http://dx.doi.org/ https://doi.org/10.1016/j.jnucmat.2012.12.020).CrossRefGoogle Scholar
  9. 9.
    E. A. Kuleshova, B. A. Gurovich, Z. V. Lavrukhina, et al., “Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation,” J. Nucl. Mater., 477, 110 – 122 (2016) (http://dx.doi.org/ https://doi.org/10.1016/j.jnucmat.2016.04.060).CrossRefGoogle Scholar
  10. 10.
    M. K. Miller and R. G. Forbes, Atom-Probe Tomography. The Local Electrode Atom Probe, Springer US (2014), 423 p. (http://dx.doi.org/ https://doi.org/10.1007/978-1-4899-7430-3).CrossRefGoogle Scholar
  11. 11.
    D. Yu. Erak, D. A. Zhurko, and V. B. Papina, “Interpretation of accelerated irradiation results for materials of WWER-1000 reactor pressure vessels,” Strength Mater., 45(4), 424 – 432 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Gurovich, E. Kuleshova, Ya. Shtrombakh, et al., “Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences,” J. Nucl. Mater., 456, 23 – 32 (2015) (https://doi.org/ https://doi.org/10.1016/j.jnucmat.2014.09.019).CrossRefGoogle Scholar
  13. 13.
    E. A. Kuleshova, B. A. Gurovich, Z. V. Lavrukhina, et al., “Study of the flux effect nature for VVER-1000 RPV welds with high nickel content,” J. Nucl. Mater., 483, 1 – 12 (2017) (https://doi.org/ https://doi.org/10.1016/j.jnucmat.2016.10.030).CrossRefGoogle Scholar
  14. 14.
    D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford (1957), 323 p.Google Scholar
  15. 15.
    M. V. Sorokin, Z. V. Lavrukhina, A. N. Khodan, et al., “Effect of subgrain structure on the kinetics of phosphorus segregation in grain boundaries,” Mater. Lett., 158, 151 – 154 (2015) (https://doi.org/ https://doi.org/10.1016/j.matlet.2015.05.145).CrossRefGoogle Scholar
  16. 16.
    B. A. Gurovich, A. A. Chernobaeva, D. Yu. Erak, et al., “Chemical composition effect on VVER-1000 PRV weld metal thermal aging,” J. Nucl. Mater., 465, 540 – 549 (2015) (http://dx.doi.org/ https://doi.org/10.1016/j.jnucmat.2015.06.010).CrossRefGoogle Scholar
  17. 17.
    A. Kryukov, D. Erak, L. Debarberis, et al., “Extended analysis of VVER-1000 surveillance data International,” J. Press. Vess. Piping, 79(8 – 10), 661 – 664 (2002) (https://doi.org/ https://doi.org/10.1016/S0308-0161(02)00069-8).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Kuleshova
    • 1
    • 2
    Email author
  • D. A. Mal’tsev
    • 1
  • S. V. Fedotova
    • 1
  1. 1.“Kurchatov Institute” National Research CenterMoscowRussia
  2. 2.“MIFI” National Nuclear Research UniversityMoscowRussia

Personalised recommendations