Warm Deformation of Alloy Al – 4.7% Mg – 0.32% Mn – 0.21% Sc – 0.09% Zr

  • A. V. Pozdnyakov
  • R. Yu. BarkovEmail author
  • O. A. Yakovtseva
  • V. S. Levchenko
  • A. S. Prosviryakov
  • V. S. Zolotorevskii

The evolution of the structure and mechanical properties of sheets from alloy Al – 4.7% Mg – 0.32% Mn – 0.21% Sc – 0.09% Zr during warm rolling and subsequent annealing is studied. It is shown that extended fibers with a thickness of 50 – 100 nm form inside the deformed grains in the rolling process. Post-rolling annealing of the sheets at 150 and 200°C results in substantial lowering of the elongation after a hold for 3 h; then the ductility recovers after a hold for 5 h. The lowering of the ductility is associated with precipitation of a fine β -phase over grain boundaries during the annealing. The phase grows and its volume fraction decreases when the annealing time is prolonged. The possibility of formation of high-level mechanical properties after warm rolling and subsequent annealing is shown.

Key words

aluminum alloys warm deformation microstructure transmission electron microscopy mechanical properties 


The work has been performed with support of the Ministry of Education and Science of the Russian Federation within State Provision No. 11.7172.2017/BCh for higher educational organizations.


  1. 1.
    V. V. Rybin, High Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986), 224 p.Google Scholar
  2. 2.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys [in Russian], MISiS, Moscow (2005), 432 p.Google Scholar
  3. 3.
    Yu. A. Filatov, G. G. Baydin, R. I. Dobrozhinskaya, et al., “Novel heat-hardenable weldable cryogenic alloy 1545K based on the Al – Mg – Sc system,” Tekhnol. Legk. Splavov, No. 1, 32 – 36 (2014).Google Scholar
  4. 4.
    Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, “New Al – Mg – Sc alloys,” Mater. Sci. Eng. A, 280, 97 – 100 (2000).CrossRefGoogle Scholar
  5. 5.
    V. I. Elagin and V. A. Livanova (eds.), Aluminum Alloys. Structure and Properties of Semiproducts from Aluminum Alloys [in Russian], Metallurgiya, Moscow (1984), 408 p.Google Scholar
  6. 6.
    V. G. Davydov, T. D. Rostova, V. V. Zakharov, et al., “Scientific principles of making an alloying addition of scandium to aluminum alloys,” Mater. Sci. Eng. A, 280, 30 – 36 (2000).CrossRefGoogle Scholar
  7. 7.
    O. Roder, T. Wirtz, A. Gysler, and G. Lutjering, “Fatigue properties of Al – Mg alloys with and without scandium,” Mater. Sci. Eng. A, 234 – 236, 181 – 184 (1997).CrossRefGoogle Scholar
  8. 8.
    A. Washikita, K. Kitagawa, V. I. Kopylov, and A. Vinogradov, “Tensile and fatigue properties of Al – Mg – Sc – Zr alloy fine-grained by equal-channel angular pressing,” in: Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lou (eds.), Ultrafine Grain Metals II, TMS (2002), p. 341.Google Scholar
  9. 9.
    R. Z. Valiev, A. V. Korznikov, and R. R. Milyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation,” Mater. Sci. Eng. A, 168, 141 – 148 (1993).CrossRefGoogle Scholar
  10. 10.
    I. Sabirov, M. Yu. Murashkin, and R. Z. Valiev, “Nanostructured aluminum alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng. A, 560, 1 – 24 (2013).CrossRefGoogle Scholar
  11. 11.
    R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci., 51, 881 – 981 (2001).CrossRefGoogle Scholar
  12. 12.
    A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci., 53, 893 – 979 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultrahigh straining process for bulk materials—development of the accumulative roll-bonding (ARB) process,” Acta Mater., 47, 579 – 583 (1999).CrossRefGoogle Scholar
  14. 14.
    A. Vinogradov, A. Washikita, K. Kitagawa, and V. I. Kopylov, “Fatigue life of fine-grain Al – Mg – Sc alloys produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 349, 318 – 326 (2003).CrossRefGoogle Scholar
  15. 15.
    H. J. Roven, H. Nesboe, J. C. Werenskiold, and T. Seibert, “Mechanical properties of aluminum alloys processed by SPD: Comparison of different alloy systems and possible product areas,” Mater. Sci. Eng. A, 410 – 411, 426 – 429 (2005).CrossRefGoogle Scholar
  16. 16.
    E. V. Avtokratova, R. O. Kaibyshev, and O. Sh. Sitdikov, “Fatigue of a fine-grained high-strength Al – 6Mg – Sc alloy produced by equal-channel angular pressing,” Phys. Met. Metall., 105(5), 500 – 508 (2008).CrossRefGoogle Scholar
  17. 17.
    O. Sh. Sitdikov, E. V. Avtokratova, and R. I. Babicheva, “Effect of temperature on the formation of a microstructure upon equal channel angular pressing of the Al – Mg – Sc 1570 alloy,” Phys. Met. Metall., 110(2), 153 – 161 (2010).CrossRefGoogle Scholar
  18. 18.
    E. V. Avtokratova, O. Sh. Sitdikov, R. O. Kaibyshev, and Y. Watanabe, “Behavior of a submicrocrystalline aluminum alloy 1570 under conditions of cyclic loading,” Phys. Met. Metall., 107(3), 291 – 297 (2009).CrossRefGoogle Scholar
  19. 19.
    V. S. Zolotarevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, et al., “Evolution of structure and mechanical properties of Al – 4.7Mg – 0.32Mn – 0.21Sc – 0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metall., 117(11), 1163 – 1169 (2016).CrossRefGoogle Scholar
  20. 20.
    V. S. Zolotarevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, et al., “Strength and substructure of Al – 4.7Mg – 0.32Mn – 0.21Sc – 0.09Zr alloy sheets,” Phys. Met. Metall., 118(4), 407 – 414 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Pozdnyakov
    • 1
  • R. Yu. Barkov
    • 1
    Email author
  • O. A. Yakovtseva
    • 1
  • V. S. Levchenko
    • 1
  • A. S. Prosviryakov
    • 1
  • V. S. Zolotorevskii
    • 1
  1. 1.National Research Technological University “MISiS” (NITU “MISiS”)MoscowRussia

Personalised recommendations