Synthesis and Properties of “Reduced Graphene Oxide –Copper” Composites Produced by the Method of Repeated Pressing and Sintering

  • Sh. Gua
  • Ha. ZhengEmail author
  • X. Shu
  • G. Li
  • T. Wu
  • R. Cai

We study composites with copper matrix reinforced by plates of graphene oxide produced by the method of repeated pressing and sintering. We determine the hardness, relative density, ultimate strength, elongation, and conductivity of composites made by applying different modes of pressing and sintering. The influence of the modes of treatment on the properties of composite is analyzed by the method of design of orthogonal experiments L16 (45). The optimal parameters of double pressing and sintering are proposed.

Key words

“copper – graphene oxide” composite pressing sintering design of orthogonal experiment optimization 


  1. 1.
    L. Y. Chen, J. Y. Peng, J. Q. Xu et al. “Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing,” Scr. Mater., 69, 634 – 637 (2013).CrossRefGoogle Scholar
  2. 2.
    S. C. Tjong, “Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties,” Adv. Eng. Mater., 9, 639 – 652 (2007).CrossRefGoogle Scholar
  3. 3.
    J. B. Ferguson, F. Sheykh-Jaberi, C. S. Kim, et al. “On the strength and strain to failure in particle-reinforced magnesium metal matrix nanocomposites (Mg MMNCs),” Mater. Sci. Eng. A, 558, 193 – 204 (2012).CrossRefGoogle Scholar
  4. 4.
    C. S. Kim, Il. Sohn, M. Nezafati, et al. “Prediction models for the yield strength of particle reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs),” J. Mater. Sci., 48, 4191 – 204 (2013).CrossRefGoogle Scholar
  5. 5.
    R. X. Zheng, H. Yang, T. Liu, et al. “Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles,” Mater. Des., 53, 512 – 518 (2014).CrossRefGoogle Scholar
  6. 6.
    A. S. Prosviryakov, “SiC content effect on the properties of Cu – SiC composites produced by mechanical alloying,” J. Alloys Compd., 632, 707 – 710 (2015).CrossRefGoogle Scholar
  7. 7.
    D. S. Zhou, W. Zeng, and D. L. Zhang, “A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity,” J. Alloys Compd., 682, 590 – 593 (2016).CrossRefGoogle Scholar
  8. 8.
    Gh. A. Bagheri, “The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles,” J. Alloys Compd., 676, 120 – 126 (2016).CrossRefGoogle Scholar
  9. 9.
    S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng. R, 74, 281 – 350 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Cho, K. Kikuchi, and A. Kawasaki, “On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube – copper matrix composite,” Acta Mater., 60, 726 – 736 (2013).CrossRefGoogle Scholar
  11. 11.
    K. T. Kim, S. I. Cha, S. H. Hong, et al. “Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites,” Mater. Sci. Eng. A, 430, 27 – 33 (2006).CrossRefGoogle Scholar
  12. 12.
    Z. W. Xue, L. D. Wang, P. T. Zhao, et al. “Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites with molecular-level dispersion,” Mater. Des., 34, 298 – 301 (2012).CrossRefGoogle Scholar
  13. 13.
    F. Schedin, A. K. Geim, S. V. Morozov, et al. “Detection of individual gas molecules adsorbed on grapheme,” Nat. Mater., 6, 652 – 657 (2007).CrossRefGoogle Scholar
  14. 14.
    M. A. Rafiee, J. Rafiee, Z. Wang, et al. “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano., 12, 3884 – 3890 (2009).CrossRefGoogle Scholar
  15. 15.
    C. Lee, X. D.Wei, J.W. Kysar, et al. “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science, 321, 385 – 388 (2008).CrossRefGoogle Scholar
  16. 16.
    W. J. Kim, T. J. Lee, and S. H. Han, “Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties,” Carbon, 69, 55 – 65 (2014).CrossRefGoogle Scholar
  17. 17.
    X. J. Zhang, K. F. Wu, M. He, et al. “Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze-drying and spark plasma sinterin,” Mater. Lett., 166, 67 – 70 (2016).CrossRefGoogle Scholar
  18. 18.
    M. X. Li, J. Xie, Y. D. Li, et al. “Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties,” Phys. Status Solidi A, 212, 2154 – 2161 (2015).CrossRefGoogle Scholar
  19. 19.
    F. Y. Chen, J. M. Ying, Y. F. Wang, et al. “Effects of grapheme content on the microstructure and properties of copper matrix composites,” Carbon, 96, 836 – 842 (2016).CrossRefGoogle Scholar
  20. 20.
    J. Dutkiewicz, P. Ozga, W. Maziarz, et al. “Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets,” Mater. Sci. Eng. A., 628, 124 – 134 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Y. Yue, L. H. Yao, X. Gao, et al. “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloys Compd., 691, 755 – 762 (2017).CrossRefGoogle Scholar
  22. 22.
    L. Zhang, E. Pollak, W. C. Wang, et al. “Electronic structure study of ordering and interfacial interaction in grapheme/Cu composites,” Carbon, 50, 5316 – 5322 (2017).CrossRefGoogle Scholar
  23. 23.
    J. A. Rodriguez, J. M. Gallardo, and E. J. Herrera, “Consolidation of mechanically alloyed aluminum by double cold-pressing and sintering,” J. Mater. Proc. Technol., 56, 254 – 262 (1996).CrossRefGoogle Scholar
  24. 24.
    N. B. Thomas and M. Debasis, “Characterization of x-ray irradiated graphene oxide coatings using x-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy,” Powder Diffr., 28, 68 – 71 (2013).CrossRefGoogle Scholar
  25. 25.
    T. Varol A. and Canakci, “Microstructure, electrical conductivity and hardness of multilayer grapheme/copper nanocomposites synthesized by flake powder metallurgy,” Met. Mater. Int., 21, 704 – 712 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sh. Gua
    • 1
  • Ha. Zheng
    • 1
    Email author
  • X. Shu
    • 1
  • G. Li
    • 1
  • T. Wu
    • 1
  • R. Cai
    • 1
  1. 1.Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of EducationJiangxiChina

Personalised recommendations