Experimental Search for Chemical Compositions of Superelastic Titanium Alloys with Enhanced Functional Properties

  • A. S. KonopatskiiEmail author
  • S. M. Dubinskii
  • Yu. S. Zhukova
  • K. Inaekyan
  • V. Brailovskii
  • S. D. Prokoshkin
  • M. R. Filonov

Ti – Zr-based alloys with a high zirconium content prepared by vacuum-arc remelting with nonconsumable tungsten electrode are studied. The optimum number of remelting operations and melting conditions in order to achieve a highly uniform distribution of components and low content of impurities in the alloy are determined. Optimum thermomechanical treatment (cold rolling) and post-deformation annealing regimes are proposed. X-ray studies are conducted at room temperature and after thorough cooling in order to determine the crystallographic resource of alloy reversible deformability. Alloy susceptibility towards superelastic behavior at room temperature, cyclic endurance and its dependence on annealing atmosphere are evaluated in the course of tension-compression mechanical tests.

Key words

titanium alloys superelasticity low Young’s modulus biocompatibility 


Work was carried out with financial support of the Federal Target program (measure 1.2 “Development of technology for creating intrabone implants with a biopolymer coating based on superelastic titanium alloys,” unique identifier RFMEF167517XO158).


  1. 1.
    D. Carter, W. Caler, D. Spengler, and V. Frankel, “Fatigue behavior of adult cortical bone: the influence of mean strain and strain range,” Acta Orthop., 52(5), 481 – 490 (1981).CrossRefGoogle Scholar
  2. 2.
    S. Shabalovskaya, “On the nature of the biocompatibility and on the medical applications of NiTi shape memory alloys,” Bio-Med. Mater. Eng., 6(4), 267 – 289 (1996).Google Scholar
  3. 3.
    V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti – Ni alloys processed by cold rolling and post deformation annealing,” J. Alloys Compd., 509(5), 2066 – 2075 (2011).CrossRefGoogle Scholar
  4. 4.
    I. Khmelevskaya, I. Trubitsyna, S. Prokoshkin, et al., “Thermomechanical treatment of Ti – Ni-based shape memory alloys using severe plastic deformation,” Mater. Sci. Forum, 426 – 432(3), 2765 – 2770 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “Thermomechanical treatment of TiNi intermetallic-based shape memory alloys,” in: N. Resnina and V. Rubanik (eds.), Shape Memory Alloys: Properties, Technologies, Opportunities, Trans Tech Publ., Pfaffikon, Switzerland (2015).Google Scholar
  6. 6.
    J. Kim, H. Kim, T. Inamura, et al., “Shape memory characteristics of Ti – 22 Nb – (2 – 8) Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A, 403(1 – 2), 334 – 339 (2005).CrossRefGoogle Scholar
  7. 7.
    H. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti – 22Nb – 6Ta alloy,” Acta Mater., 54(2), 423 – 433 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Buenconsejo, H. Kim, H. Hosoda, and S. Miyazaki, “Shape memory behavior of Ti – Ta and its potential as a high-temperature shape memory alloy,” Acta Mater., 57(4), 1068 – 1077 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Fu, H. Kim, and S. Miyazaki, “Effect of annealing temperature on microstructure and superelastic properties of a Ti – 18Zr– 4.5Nb – 3Sn – 2Mo alloy,” J. Mech. Behav. Biomed., 65(1), 716 – 723 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Hosoda, N. Hosoda, and S. Miyazaki, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Trans. Mat. Res. Soc. J., 26, 243 – 246 (2001).Google Scholar
  11. 11.
    T. Ahmed and H. Rack, “Martensitic transformations in Ti – (16 – 26) at.% Nb alloys,” J. Mater. Sci., 31, 4267 – 4276 (1996).CrossRefGoogle Scholar
  12. 12.
    H. Kim, H. Satoru, J. Kim, et al., “Mechanical properties and shape memory behavior of Ti – Nb alloys,” Mat. Trans., 45, 2443 – 2448 (2004).CrossRefGoogle Scholar
  13. 13.
    V. Sheremetyev, V. Brailovski, S. Prokoshkin, et al., “Functional fatigue behavior of superelastic beta Ti – 22Nb – 6Zr (at.%) alloy for load-bearing biomedical applications,” Mater. Sci. Eng., 58, 935 – 944 (2016).CrossRefGoogle Scholar
  14. 14.
    V. Brailovski, S. Prokoshkin, M. Gauthier, et al., “Bulk and porous metastable beta Ti – Nb – Zr(Ta) alloys for biomedical applications,” Mat. Sci. Eng., 31(3), 543 – 657 (2011).Google Scholar
  15. 15.
    H. Kim, J. Fu, H. Tobe, et al., “Crystal structure, transformation strain, and superelastic property of Ti – Nb – Zr and Ti – Nb –Ta alloys,” Shape Memory Superelasticity, 1, 107 – 116 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Konopatsky, S. Dubinskiy, Y. Zhukova, et al., “Ternary Ti –Zr – Nb and quaternary Ti – Zr – Nb – Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties,” Mat. Sci. Eng., A702, 301 – 311 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Konopatskii
    • 1
    Email author
  • S. M. Dubinskii
    • 1
  • Yu. S. Zhukova
    • 1
  • K. Inaekyan
    • 2
  • V. Brailovskii
    • 2
  • S. D. Prokoshkin
    • 1
  • M. R. Filonov
    • 1
  1. 1.National Research Technological University “MISiS”MoscowRussia
  2. 2.École de Technologie Supérieure (ETS)MontréalCanada

Personalised recommendations