A Study of Texture Component Distribution Over the Cross Section of an Aluminum Alloy 8011 Billet with Hot Rolling in a Four-Stand Continuous Group

  • V. V. YashinEmail author
  • E. V. Aryshenskii
  • S. V. Konovalov
  • V. Yu. Aryshenskii
  • I. A. Latushkin

Nonuniformity of texture component and microstructure parameter distribution in the cross section of an alloy 8011 billet during hot rolling in a continuous group is studied. The study is performed by optical microscopy and x-ray diffraction analysis of microsections taken from hot-rolled strip in all stages of rolling in a hot-rolling mill continuous group. It is established that at first the texture is inhomogeneous over the thickness of a specimen, but it levels out in the hot rolling finishing passes. The results obtained are in good agreement with the theoretical concept of O. Engler in which the ratio of the components of the strain rate tensor I13/I11 is used to estimate the probability of appearance of a friction texture. Finite modeling using DEFORM 2D/3D software is used for theoretical analysis of the strain tensor components.

Key words

microstructure texture hot rolling friction texture DEFORM 2D/3D software aluminum alloys 


  1. 1.
    N. Eswara Prasad and R. J. H. Wanhill, Aerospace Materials and Material Technologies, Vol. 1: Aerospace Materials, Springer Singapore, Singapore (2017).Google Scholar
  2. 2.
    J. Hirsch, “Aluminium in innovative light-weight car design,” Mater. Trans., 52(5), 818 – 824 (2011).CrossRefGoogle Scholar
  3. 3.
    G. E. Totten and D. S. MacKenzie (ed.), Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes, CRC Press (2003).Google Scholar
  4. 4.
    O. Engler and J. Hirsch, “Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups,” Mater. Sci. Eng. A, 452 – 453, 640 – 651 (2007).CrossRefGoogle Scholar
  5. 5.
    J. Hirsch, “Through process modelling,” Mater. Sci. Forum, 519 – 521, 15 – 24 (2006).CrossRefGoogle Scholar
  6. 6.
    O. Engler, C. N. Tomé, and M.-Y. Huh, “A study of throughthickness texture gradients in rolled sheets,” Metall. Mater. Trans. A, 31(9), 2299 – 2315 (2000).CrossRefGoogle Scholar
  7. 7.
    C. G. Kang, H. G. Kang, H. C. Kim, et al., “Formation of shear texture components during hot rolling of AA1050,” J. Mater. Proc. Technol., 187, 542 – 545 (2007).CrossRefGoogle Scholar
  8. 8.
    A. P. Grudev, L. F. Makschin, and M. I. Hanin, Rolling Technology [in Russian] Metallurgical (1994).Google Scholar
  9. 9.
    E. Aryshenskii, R. Kawalla, A. Vladimir, and S. Christian, “Investigation of texture and structure evolution during hot rolling of 1070, 3104 and 8011 aluminum alloys in continuous mill,” Metallurgia Italiana, 109(3), 11 – 21 (2017).Google Scholar
  10. 10.
    E. Aryshenskii, R. Kawalla, and J. Hirsch, “Development of new fast algorithms for calculation of texture evolution during hot continuous rolling of Al – Fe alloys,” Steel Res. Int. (2017).Google Scholar
  11. 11.
    F. J. Humphreys, Recrystallization and Related Annealing Phenomena, Max Hatherly, Elsevier (2012), p. 574.Google Scholar
  12. 12.
    M. Y. Huh, Y. S. Cho, and O. Engler, “Effect of lubrication on the evolution of microstructure and texture during rolling and recrystallization of copper,” Mater. Sci. Eng. A, 247(1), 152 – 164 (1998).CrossRefGoogle Scholar
  13. 13.
    O. Engler, “On the influence of dispersoids on the particle stimulated nucleation of recrystallization in an Al – Fe – Si model alloy,” Mater. Sci. Forum, 273275, 483 – 488 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Yashin
    • 1
    Email author
  • E. V. Aryshenskii
    • 2
  • S. V. Konovalov
    • 2
  • V. Yu. Aryshenskii
    • 2
  • I. A. Latushkin
    • 1
  1. 1.Arkonik SMZ CompanySamaraRussia
  2. 2.Academician S. P. Korolev Samara National Research UniversitySamaraRussia

Personalised recommendations