A Study of Mechanical Alloying of an Aluminum Composite Material Reinforced with Silicon Carbide Particles

  • E. I. KurbatkinaEmail author
  • A. A. Shavnev
  • A. V. Gololobov

A composite material based on alloy V95 containing 10% silicon carbide and prepared by powder metallurgy is studied. Composite granules are fabricated by mechanical alloying in a planetary mill in an inert gas atmosphere. It is shown that the structure of the composite granules affects the structure of the billets obtained after deformation treatment by extrusion, i.e., the more homogeneous the structure of the granules, the more homogeneous is the bar structure.

Key words

mechanical alloying composite material aluminum alloy silicon carbide phase composition structure. 


Work was conducted with financial support the Russian Scientific Fund. Agreement No. 17-73-10328. The article was prepared within the scope of implementing comprehensive scientific area 12.1. “Metal composite materials (MCM) reinforced with particles and fibers of refractory compounds (“Strategic area for development of materials and their preparation technology for the period up to 2030”)” [21].


  1. 1.
    G. J. Long and F. Grandjean, Mossbauer Spectroscopy Applied to Materials and Magnetism, Plenum Press, New York (1989).Google Scholar
  2. 2.
    E. N. Kablov, “Contemporary materials—a basis of innovative modernization of Russia,” Metally Evrazii, No. 3, 10 – 15 (2012).Google Scholar
  3. 3.
    C. Suryanarayana, “Mechanical alloying and milling,” Progr. Mater. Sci., 46, 1 – 184 (2001).CrossRefGoogle Scholar
  4. 4.
    B. V. Neamþu, H. F. Chicina, T. F. Marinca, et al., “Preparation and characterization of Co – Fe – Ni – M – Si – B (M= Zr, Ti) amorphous powders by wet mechanical alloying,” J. Alloys Compounds, 673, 80 – 85 (2016).CrossRefGoogle Scholar
  5. 5.
    C. K. Lin, P. Y. Lee, S.W. Kao, et al., “Solid state amorphization of Fe50Nb50 powders during mechanical alloying,” Mater. Sci. Forum, 312 – 314, 55 – 60 (1999).CrossRefGoogle Scholar
  6. 6.
    R. Nagarajan and S. Ranganathan, “A study of the glass-forming range in the ternary TiNiAl system by mechanical alloying,” Mater. Sci. Eng. A, 179 – 180, 168 – 172 (1994).CrossRefGoogle Scholar
  7. 7.
    C. H. Zweben and P. Beaumont, Comprehensive Composite Materials, 2nd Edition, Elsevier (2018).Google Scholar
  8. 8.
    W. F. Jandeska and R. A. Chernenkoff, Powder Metallurgy Aluminum and Light Alloys for Automotive Applications, Metal Powder Industries Federation, Princeton, NJ (1998).Google Scholar
  9. 9.
    B. Velidandla, B. Radhakrishna, K. Anjilivelil, et al., “P/M processing of Al – SiC composites,” J. Powder Metall., 27, 227 – 235 (1991).Google Scholar
  10. 10.
    Y. B. Liu, J. K. M. Kwok, S. C. Lim, et al., “Fabrication of Al – 4.5Cu/15SiC composites: I. Processing using mechanical alloying,” J. Mater. Proc. Technol., 37(1 – 4), 441 – 451 (1993).CrossRefGoogle Scholar
  11. 11.
    L. Lu, M. O. Lai, C.W. Ng, “Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying,” Mater. Sci. Eng. A, 252(2), 203 – 211 (1998).CrossRefGoogle Scholar
  12. 12.
    R. Sankar and P. Singh, “Synthesis of 7075 Al/SiC particulate composite powders by mechanical alloying,” Mater. Lett., 36(1 – 4), 201 – 205 (1998).CrossRefGoogle Scholar
  13. 13.
    C. C. Kock, “Materials synthesis by mechanical alloying,” Annual Rev. Mater. Res., 19, 121 – 143 (1989).CrossRefGoogle Scholar
  14. 14.
    A. Hightower, B. Fultz, and R. C. Bowman Jr., “Mechanical alloying of Fe and Mg,” J. Alloys Compounds, 252, 238 – 244 (1997).CrossRefGoogle Scholar
  15. 15.
    A. V. Tikhomirov, Modeling and Optimization of Mechanical Alloying of Composite Materials Based on Aluminum Alloys, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (2008) (Defence location: Moscow Inst. of Steels and Alloys).Google Scholar
  16. 16.
    E. N. Kablov, B. V. Shchetanov, A. A. Shavnev, et al., “Properties and use of highly filled metal matrix composite material Al – SiC,” Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo, No. 3-1, 56 – 59 (2011).Google Scholar
  17. 17.
    E. N. Kablov, D. V. Grashchenkov, V. V. Shchetanov, et al., “Metal composite materials based Al – SiC for electronics,” Mekhan. Kompozit. Mater. Konstr., 18(3), 359 – 368 (2012).Google Scholar
  18. 18.
    V. A. Duyunova, E. F. Volkova, Z. Ya. Uridiya, and A. V. Trapeznikov, “Dynamics of development of magnesium and aluminum cast alloys,” Aviats. Mater. Tekhnol., No. S, 225 – 241 (2017); DOI:
  19. 19.
    V. V. Berezovskii, A. A. Shavnev, S. B. Lomov, and Yu. A. Kurganovaa, “Preparation and analysis of the structure dispersion strengthened composite materials of the Al – SiC system with a different reinforcing phase content,” Aviats. Mater. Tekhnol., No. S6, 17 – 23 (2014); DOI: Scholar
  20. 20.
    D. V. Grashchenkov, “Strategy of developing nonmetallic materials, metal composite materials, and heat protection,” Aviats. Mater. Tekhnol., No. S, 264 – 271 (2017); DOI:
  21. 21.
    E. N. Kablov, “Innovative work of FGUP VIAM GNTs RF for implementing strategic areas of material development and technology for their preparation in the periods up to 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3 – 33 (2015); DOI:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. I. Kurbatkina
    • 1
    Email author
  • A. A. Shavnev
    • 1
  • A. V. Gololobov
    • 1
  1. 1.FGUP VIAMMoscowRussia

Personalised recommendations